POJ1745Divisibility(01背包思想)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 11151 | Accepted: 3993 |
Description
17 + 5 + -21 - 15 = -14
17 + 5 - -21 + 15 = 58
17 +
5 - -21 - 15 = 28
17 - 5 + -21 + 15 = 6
17 - 5 + -21 - 15 = -24
17 -
5 - -21 + 15 = 48
17 - 5 - -21 - 15 = 18
We call the sequence of
integers divisible by K if + or - operators can be placed between integers in
the sequence in such way that resulting value is divisible by K. In the above
example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible
by 5.
You are to write a program that will determine divisibility of
sequence of integers.
Input
integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a
space.
The second line contains a sequence of N integers separated by
spaces. Each integer is not greater than 10000 by it's absolute value.
Output
sequence of integers is divisible by K or "Not divisible" if it's not.
Sample Input
4 7
17 5 -21 15
Sample Output
Divisible
题意:输入n个数,通过添加+和-能否是的结果对k取余为0
思路:智商再次背碾压
首先一个数,不用说,第一个数之前不用加符号就是本身,那么本身直接对K取余,
那么取17的时候有个余数为2
然后来了一个5,
(2 + 5)对7取余为0
(2 - 5)对7取余为4(将取余的负数变正)
那么前2个数有余数0和4
再来一个-21
(0+21)对7取余为0
(0-21)对7取余为0
(4+21)对7取余为4
(4-21)对7取余为4
再来一个-15同样是这样
(0+15)%7 = 1
(0-15)%7 = 6
(4+15)%7 = 5
(4-15)%7 = 3
同理可以找到规律,定义dp[i][j]为前i个数进来余数等于j是不是成立,1为成立,0为不成立
那么如果dp[N][0]为1那么即可以组成一个数对K取余为0
初始化dp为0
然后dp[1][a[1]%k] = 1
for i = 2 to N do
for j = 0 to K do
if(dp[i - 1][j])
dp[i][(j + a[i])%k] = 1;
dp[i][(j - a[i])%k] = 1;
if end
for end
for end
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp[ + ][ + ],a[ + ];
int n,k;
int mod(int x)
{
if(x < )
{
return x + k;
}
else
return x;
}
int main()
{
while(scanf("%d%d", &n, &k) != EOF)
{
for(int i = ; i <= n; i++)
scanf("%d", &a[i]);
memset(dp, , sizeof(dp));
dp[][ mod(a[] % k) ] = ;
for(int i = ; i <= n; i++)
{
for(int j = ; j <= k; j++)
{
if(dp[i - ][j])
{
dp[i][ mod((j + a[i]) % k)] = ;
dp[i][ mod((j - a[i]) % k)] = ;
}
}
}
if(dp[n][])
printf("Divisible\n");
else
printf("Not divisible\n");
} return ;
}
POJ1745Divisibility(01背包思想)的更多相关文章
- 01背包 Codeforces Round #267 (Div. 2) C. George and Job
题目传送门 /* 题意:选择k个m长的区间,使得总和最大 01背包:dp[i][j] 表示在i的位置选或不选[i-m+1, i]这个区间,当它是第j个区间. 01背包思想,状态转移方程:dp[i][j ...
- SPOJ RENT 01背包的活用+二分
这个题目给定N航班的发出时间和结束时间以及价值,要求不冲突时间的最大价值 第一时间想到经典的N方DP,即对航班按发出时间排一下序之后每个i对前面的都扫一遍 时间过不了N有10万,只能想优化了,一开始想 ...
- HDU 3446 有贪心思想的01背包
Proud Merchants Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) ...
- hdu–2369 Bone Collector II(01背包变形题)
题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...
- DP:Cow Exhibition(POJ 2184)(二维问题转01背包)
牛的展览会 题目大意:Bessie要选一些牛参加展览,这些牛有两个属性,funness和smartness,现在要你求出怎么选,可以使所有牛的smartness和funness的最大,并且这两 ...
- hdu3496 二维01背包
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=3496 //刚看题目以为是简单的二维01背包,but,,有WA点.. 思路:题中说,只能买M ...
- hdu 2955 01背包
http://acm.hdu.edu.cn/showproblem.php?pid=2955 如果认为:1-P是背包的容量,n是物品的个数,sum是所有物品的总价值,条件就是装入背包的物品的体积和不能 ...
- Balance(01背包)
Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9163 Accepted: 5617 Description Gigel ...
- HDU -2546饭卡(01背包+贪心)
这道题有个小小的坎,就是低于5块不能选,大于5块,可以任意选,所以就在初始条件判断一下剩余钱数,然后如果大于5的话,这时候就要用到贪心的思想,只要大于等于5,先找最大的那个,然后剩下的再去用背包去选择 ...
随机推荐
- Linux下用信号量实现对共享内存的访问保护
转自:http://www.cppblog.com/zjl-1026-2001/archive/2010/03/03/108768.html 最近一直在研究多进程间通过共享内存来实现通信的事情,以便高 ...
- Linux 图形化操作
//Linux图形化操作 #include <stdio.h> #include <stdlib.h> #include <string.h> #include & ...
- Linux 网络编程七(非阻塞socket:epoll--select)
阻塞socket --阻塞调用是指调用结果返回之前,当前线程会被挂起.函数只有在得到结果之后才会返回. --对于文件操作 read,fread函数调用会将线程阻塞(平常使用read感觉不出来阻塞, 因 ...
- 突然想起android与mfc差异
两者都可以算作是客户端程序,都是做上位机用的.而且都是被动执行. 相同点: 1.MFC中,它是由 project的名字 里面的某个成员函数来初始化,窗体,以及窗体里面的变量. 后面都是监听消息循环.数 ...
- Linux常用指令---netstat(网络端口)
netstat命令用于显示与IP.TCP.UDP和ICMP协议相关的统计数据,一般用于检验本机各端口的网络连接情况.netstat是在内核中访问网络及相关信息的程序,它能提供TCP连接,TCP和UDP ...
- 学习Shell脚本编程(第3期)_在Shell程序中使用的参数
位置参数 内部参数 如同ls命令可以接受目录等作为它的参数一样,在Shell编程时同样可以使用参数.Shell程序中的参数分为位置参数和内部参数等. 3.1 位置参数 由系统提供的参数称为位置参数.位 ...
- Solr(5.1.0) 与Tomcat 从0开始安装与配置
1.什么是Solr? Solr是一个基于Lucene的Java搜索引擎服务器.Solr 提供了层面搜索.命中醒目显示并且支持多种输出格式(包括 XML/XSLT 和 JSON 格式).它易于安装和配置 ...
- 关于那些难改的bug
多年的测试经验中,经常发现有这么一种现象:总有些提了的bug不能顺利的被修复.这些bug往往有4个走向: 1.在被发现的版本中最终被解决,但中途花费较多周折. 2.有计划的在后续的版本中被解决. 3. ...
- 我的第二个app上线:术购管家
忙了两周写完的app,终于发布了,可是等上线竟然等了两周多,今天终于上线了,一路顺畅,没有被打回过...
- 在C#中使用官方驱动操作MongoDB ---转载
http://blog.csdn.net/dannywj1371/article/details/7440916