Graph Coloring
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4893   Accepted: 2271   Special Judge

Description

You are to write a program that tries to find an optimal coloring for a given graph. Colors are applied to the nodes of the graph and the only available colors are black and white. The coloring of the graph is called optimal if a maximum of nodes is black. The coloring is restricted by the rule that no two connected nodes may be black.

 
Figure 1: An optimal graph with three black nodes 

Input

The graph is given as a set of nodes denoted by numbers 1...n, n <= 100, and a set of undirected edges denoted by pairs of node numbers (n1, n2), n1 != n2. The input file contains m graphs. The number m is given on the first line. The first line of each graph
contains n and k, the number of nodes and the number of edges, respectively. The following k lines contain the edges given by a pair of node numbers, which are separated by a space.

Output

The output should consists of 2m lines, two lines for each graph found in the input file. The first line of should contain the maximum number of nodes that can be colored black in the graph. The second line should contain one possible optimal coloring. It is
given by the list of black nodes, separated by a blank.

Sample Input

1
6 8
1 2
1 3
2 4
2 5
3 4
3 6
4 6
5 6

Sample Output

3
1 4 5

Source

题目链接:POJ 1419

模版题,熟悉一下写法和过程

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0); const int N=110; bool E[N][N];
int x[N],opt[N];
int n,m,ans,cnt,maxn,vis[N<<2]; void dfs(int i)
{
int j;
if(i>n)
{
ans=cnt;
for (j=1; j<=n; ++j)
opt[j]=x[j];
}
else
{
bool flag=true;
for (j=1; j<i&&flag; ++j)
{
if(x[j]==1&&!E[j][i])
flag=false;
}
if(flag)
{
x[i]=1;
++cnt;
dfs(i+1);
--cnt;
}
if(cnt+n-i>ans)
{
x[i]=0;
dfs(i+1);
}
}
}
void init()
{
CLR(E,true);
CLR(x,0);
CLR(opt,0);
maxn=ans=cnt=0;
CLR(vis,0);
}
int main(void)
{
int i,j,tcase,x,y;
scanf("%d",&tcase);
while (~scanf("%d%d",&n,&m))
{
init();
scanf("%d%d",&n,&m);
for (i=0; i<m; ++i)
{
scanf("%d%d",&x,&y);
E[x][y]=E[y][x]=false;
}
dfs(1);
printf("%d\n",ans);
for (i=1; i<n; ++i)
if(opt[i])
printf("%d ",i);
putchar('\n');
}
return 0;
}

POJ 1419 Graph Coloring(最大独立集/补图的最大团)的更多相关文章

  1. poj 1419 Graph Coloring

    http://poj.org/problem?id=1419 题意: 一张图黑白染色,相邻点不能都染黑色,最多能染几个黑色点 最大点独立集 但是图不能同构为二分图,不能用二分图匹配来做 那就爆搜吧 还 ...

  2. poj1419 Graph Coloring 最大独立集(最大团)

    最大独立集: 顶点集V中取 K个顶点,其两两间无连接. 最大团: 顶点集V中取 K个顶点,其两两间有边连接. 最大独立集=补图的最大团最大团=补图的最大独立集 #include<iostream ...

  3. poj 1419Graph Coloring 【dfs+补图+计算最大团+计算最大独立集 【模板】】

    题目地址:http://poj.org/problem?id=1419 Graph Coloring Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  4. POJ1419 Graph Coloring(最大独立集)(最大团)

                                                               Graph Coloring Time Limit: 1000MS   Memor ...

  5. 【poj1419】 Graph Coloring

    http://poj.org/problem?id=1419 (题目链接) 题意 求一般图最大独立集. Solution 最大独立集=补图的最大团. 代码 // poj1419 #include< ...

  6. POJ1419 Graph Coloring

    嘟嘟嘟 求无向图的最大独立集. 有这么一回事:最大独立集=补图的最大团. 所谓的最大团,就是一个子图,满足图中任意两点都有边. 然后ssy巨佬告诉了我一个很没有道理强的做法:随机. 每一次random ...

  7. 【POJ】1419:Graph Coloring【普通图最大点独立集】【最大团】

    Graph Coloring Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5775   Accepted: 2678   ...

  8. uva193 - Graph Coloring

    Graph Coloring You are to write a program that tries to find an optimal coloring for a given graph. ...

  9. GPS-Graph Processing System Graph Coloring算法分析 (三)

        HamaWhite 原创,转载请注明出处!欢迎大家增加Giraph 技术交流群: 228591158     Graph coloring is the problem of assignin ...

随机推荐

  1. 【pymongo】连接认证 auth failed解决方法

    故事背景: 我在虚拟机(ip:192.168.xx.xx)上建立了一个mongo的数据库,里面已经存好了内容.里面的一个database叫做 "adb", 里面有个collecti ...

  2. 【VirtualBox】端口转发,ssh

    端口转发 VirualBox的设置 - 网络 - 端口转发 里面有主机IP.主机端口.子系统IP.子系统端口 设置后的含义是:当外部访问主机IP:主机端口后,将会把访问映射到虚拟机的子系统IP和子系统 ...

  3. JavaEE填空与判断

    Java EE软件工程师认证考试 试题库- 填空题和选择题   一.     填空题 1. HTML网页文件的标记是__html__,网页文件的主体标记是_body__,标记页面标题的标记是__tit ...

  4. iOS7隐藏顶部状态栏

    找到工程中的Supporting Files/工程名-info.plist 添加设置 1.status bar is initially hidden=YES 2.View Controller-ba ...

  5. p235习题3

  6. UML从需求到实现---类图(2)

    上节写到了UML中的类图:UML从需求到实现---类图(1) 写完以后总觉得写的不够详细.里面很多细节没有说到.一篇文章就把强大的面向对象的类说完.当然是不可能的.这次我再补充一些关于UML中类图和类 ...

  7. LBS优化方案探究

    方案1: 假设数据结构是这个样子的结构 那么找某个范围之内的用户,相当于: select * from tb_lbs_user where lat > lat_min and lat < ...

  8. 免费电子书:使用VS Online敏捷管理开源项目

    今天推荐的是一本由微软出版社发布的免费电子书,涉及的话题是如何在Visual Studio Online中基于敏捷的思想来管理开源项目. 本书的几位作者(自称ALM领域的游侠),给大家分享了在一个敏捷 ...

  9. 【JNI】C分支

    public class MainActivity extends Activity { static{ System.loadLibrary("hello"); } @Overr ...

  10. Grunt上手指南<转>

    原文链接:http://www.hulufei.com/post/grunt-introduction 安装 如果之前有装过grunt,卸载之 npm uninstall -g grunt 安装gru ...