【组合数学+动态规划】在如下8*6的矩阵中,请计算从A移动到B一共有____种走法。要求每次只能向上或向右移动一格,并且不能经过P。
在如下8*6的矩阵中,请计算从A移动到B一共有__种走法。要求每次只能向上或向右移动一格,并且不能经过P。

A:456
B:492
C:568
D:626
E:680
F:702
解析:
8*6的矩阵,从左下角A到右上角B,一共需要走12步,其中5步向上,7步向右,因此总的走法一共有C(12,5)=792种,但题目规定不能经过P,因此需要减去经过P点的走法。
经过P的路径分为两部分,从A到P,从P到B。
同理,从A到P的走法:C(6,2)=15;
同理,从P到B的走法:C(6,3)=20;
因此从A到B经过P点的走法有15*20=300种,
所以从A到B不经过P点的走法有792-300=492种。
这题其实可以用程序算出来
简单的动态规划
dp[i][j] = dp[i][j-1] + dp[i-1][j];
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string> using namespace std;
int main()
{ int dp[][] = {}; for(int i = ; i <= ; i++)
for(int j = ; j <= ; j++)
dp[i][j] = dp[i-][j] + dp[i][j-]; int dp2[][] = {};
dp2[][] = ; for(int i = ; i <= ; i++)
for(int j = ; j <= ; j++)
dp2[i][j] = dp2[i-][j] + dp2[i][j-]; cout<<dp[][] - dp2[][] * dp[][]<<endl; return ;
}
或者如下图:

【组合数学+动态规划】在如下8*6的矩阵中,请计算从A移动到B一共有____种走法。要求每次只能向上或向右移动一格,并且不能经过P。的更多相关文章
- Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168 现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行" ...
- 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵
题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: 每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K 接下 ...
- 01二维矩阵中最大全为1的正方形maxSquare——经典DP问题(二维)
在一个二维01矩阵中找到全为1的最大正方形 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 以矩阵中每一个点作为正方形右下角点来处理,而以该点为右下角点的最大边长最多比 ...
- [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- 杨氏矩阵:查找x是否在矩阵中,第K大数
参考:http://xudacheng06.blog.163.com/blog/static/4894143320127891610158/ 杨氏矩阵(Young Tableau)是一个很奇妙的数据结 ...
- IT公司100题-35- 求一个矩阵中最大的二维矩阵(元素和最大)
问题描述: 求一个矩阵中最大的二维矩阵(元素和最大).如: 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 中最大的是: 4 5 9 10 分析: 2*2子数组的最大和.遍历求和,时 ...
- [51NOD1024] 矩阵中不重复的元素(数学,精度)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1024 因为n和m都到100了,所以直接快速幂硬算一定会爆炸,考 ...
- [google面试CTCI] 1-7.将矩阵中特定行、列置0
[字符串与数组] Q:Write an algorithm such that if an element in an MxN matrix is 0, its entire row and colu ...
随机推荐
- 纯css径向渐变(CSS3--Gradient)
渐变 一.CSS3的径向渐变 效果图网址:http://www.spritecow.com 图像拼接技术 CSS3 Gradient分为linear-gradient(线性渐变)和radial-gra ...
- 4.2.2 网络编程之Socket
1基于TCP协议的Socket 服务器端首先声明一个ServerSocket对象并且指定端口号,然后调用Serversocket的accept()方法接收客户端的数据.Accept()方法在没有数据进 ...
- Visual Studio 2013 支持MVC3不完善,Razor智能提示不完整或者不提示
以下只是针对MVC3. 前天试用Orchard 1.8,用VS2013新建C#类库项目(ClassLibrary project),然后新建Views文件夹,新建cshtml,然后引用MVC3的相关d ...
- C语言itoa()函数和atoi()函数详解(整数转字符C实现)
1.int/float to string/array: C语言提供了几个标准库函数,可以将任意类型(整型.长整型.浮点型等)的数字转换为字符串,下面列举了各函数的方法及其说明. ● itoa():将 ...
- 使用lock和condition实现的阻塞队列-字符串
在jdk 的API中提供了一个字符串的阻塞队列 : class BoundedBuffer { final Lock lock = new ReentrantLock(); final Conditi ...
- Java多线程学习(转载)
Java多线程学习(转载) 时间:2015-03-14 13:53:14 阅读:137413 评论:4 收藏:3 [点我收藏+] 转载 :http://blog ...
- Asp.Net Web API 2第九课——自承载Web API
前言 阅读本文之前,您也可以到Asp.Net Web API 2 系列导航进行查看 http://www.cnblogs.com/aehyok/p/3446289.html Asp.Net Web A ...
- GoDaddy自动续费信用卡被扣款后的退款方法
今天突然收到信用卡被GoDaddy捐款的通知,上GoDaddy网站上一看,是去年购买后来没有使用的一个CA证书被自动续费了.原来在GoDaddy购买的CA证书默认是每年自动续费的,这是一个大坑啊! 当 ...
- RabbitMQ(二) -- Work Queues
RabbitMQ(一) -- Work Queues RabbitMQ使用Work Queues的主要目的是为了避免资源使用密集的任务,它不同于定时任务处理的方式,而是把任务封装为消息添加到队列中.而 ...
- Windows 8.1 开发过程中遇到的小问题(2)
又是在Windows 8.1 的分享功能,再次出现错误: A COM call (IID: ***, method index: *) to an ASTA (thread *) was blocke ...