题意

给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(998244353\) 取模。

\(1\leq n \leq 10^5\)

思路

设 \(K\) 为 \(k\) 时的答案为 \(ans_k\)

\[ans_k=\sum_{i=1}^na_i2^{n-i}\sum_{j=0}^{k-1}{i-1\choose j}
\]

\(j\) 为在 \(a_i\) 的左边选了多少个数。定义当\(i<j\) 时 \(\displaystyle{i\choose j}=0\) ,即当 \(n<0\) 时 \(\displaystyle{1\over n!}=0\)

有两个\(\sum\) ,导致难以化简,但是我们发现差分后只有一个 \(\sum\)

设 \(d_k=ans_k-ans_{k-1}\) ,则有

\[d_k=\sum_{i=1}^na_i2^{n-i}{i-1\choose k-1}\\
d_k=(k-1)!\sum_{i=1}^na_i2^{n-i}(i-1)!\cdot{1\over{(i-k)!}}
\]

用 \(i+k\) 替换 \(k\) ,并化成卷积形式

\[d_{i+k}=(i+k-1)!a_i2^{n-i}(i-1)!\cdot{1\over{(-k)!}}
\]

其中 \(i\in[1,n],i+k\in[1,n],k\in[1-n,n-1]\)

设 \(\displaystyle A_i=a_i2^{n-i}(i-1)!,B_k={1\over{(-k)!}}\)

\(d_{i+k}=(i+k-1)A_iB_k\)

处理出 \(A,B\) 两多项式,进行卷积求解即可。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long ll;
using namespace std;
const int P=998244353,g=3;
const int N=1<<17|5;
namespace Maths
{
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,y,x),y-=a/b*x;
}
ll Pow(ll a,ll p,ll P)
{
ll res=1;
for(;p>0;p>>=1,(a*=a)%=P)if(p&1)(res*=a)%=P;
return res;
}
ll inv(ll a,ll P){ll x,y;exgcd(a,P,x,y);return (x%P+P)%P;}
};
using namespace Maths;
namespace _NTT
{
const int g=3,P=998244353;
int A[N<<1],B[N<<1];
int w[N<<1],r[N<<1];
void NTT(int *a,int op,int n)
{
FOR(i,0,n-1)if(i<r[i])swap(a[i],a[r[i]]);
for(int i=2;i<=n;i<<=1)
for(int j=0;j<n;j+=i)
for(int k=0;k<i/2;k++)
{
int u=a[j+k],t=(ll)w[op==1?n/i*k:n-n/i*k]*a[j+k+i/2]%P;
a[j+k]=(u+t)%P;
a[j+k+i/2]=(u-t)%P;
}
}
void multiply(int *a,int *b,int *c,int n1,int n2)
{
int n=1;
while(n<n1+n2-1)n<<=1;
FOR(i,0,n1-1)A[i]=a[i];
FOR(i,0,n2-1)B[i]=b[i];
FOR(i,n1,n-1)A[i]=0;
FOR(i,n2,n-1)B[i]=0;
FOR(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
w[0]=1,w[1]=Pow(g,(P-1)/n,P);
FOR(i,2,n)w[i]=(ll)w[i-1]*w[1]%P; NTT(A,1,n),NTT(B,1,n);
FOR(i,0,n-1)A[i]=(ll)A[i]*B[i]%P;
NTT(A,-1,n);
int I=inv(n,P);
FOR(i,0,n1+n2-2)c[i]=((ll)A[i]*I%P+P)%P;
}
};
int A[N],B[N],C[N<<2];
int fac[N],c[N],S;
int n,m; int main()
{
fac[0]=1;FOR(i,1,N-1)fac[i]=(ll)fac[i-1]*i%P;
while(~scanf("%d",&n))
{
FOR(i,0,n)scanf("%d",&c[i]);
scanf("%d",&m);
S=0;
while(m--)
{
int x;
scanf("%d",&x);
S-=x;
if(S<0)S+=P;
}
FOR(i,0,n)A[i]=(ll)c[i]*fac[i]%P;
FOR(i,-n,0)B[i+n]=Pow(S,-i,P)*inv(fac[-i],P)%P;
_NTT::multiply(A,B,C,n+1,n+1);
FOR(i,0,n)printf("%lld ",(C[i+n]*inv(fac[i],P)%P+P)%P);
puts("");
}
return 0;
}

HDU 5829 Rikka with Subset(NTT)的更多相关文章

  1. HDU - 5829:Rikka with Subset (NTT)

    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...

  2. HDU 6092 Rikka with Subset(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...

  3. hdu 6092 Rikka with Subset(逆向01背包+思维)

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  5. HDU 6088 Rikka with Rock-paper-scissors(NTT+欧拉函数)

    题意 \(n\) 局石头剪刀布,设每局的贡献为赢的次数与输的次数之 \(\gcd\) ,求期望贡献乘以 \(3^{2n}\) ,定义若 \(xy=0\) 则,\(\gcd(x,y)=x+y\) 思路 ...

  6. hdu 6092 Rikka with Subset(多重背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...

  7. hdu 5423 Rikka with Tree(dfs)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  8. hdu 5423 Rikka with Tree(dfs)bestcoder #53 div2 1002

    题意: 输入一棵树,判断这棵树在以节点1为根节点时,是否是一棵特殊的树. 相关定义: 1.  定义f[A, i]为树A上节点i到节点1的距离,父节点与子节点之间的距离为1. 2.  对于树A与树B,如 ...

  9. hdu 5631 Rikka with Graph(图)

    n个点最少要n-1条边才能连通,可以删除一条边,最多删除2条边,然后枚举删除的1条边或2条边,用并查集判断是否连通,时间复杂度为O(n^3) 这边犯了个错误, for(int i=0;i<N;i ...

随机推荐

  1. codeforces 768c Jon Snow And His Favourite Number

    题意: 给出一个数列,和一种操作,以及两个数x和k. 这个操作有两个步骤: 首先把这个数列按照升序排序,然后把所有奇数位上的数字与x异或. 问执行k次操作之后,这个数列的最大值和最小值是多少. 思路: ...

  2. SVN && BeyondCompare

    [1]设置内容 (1)三个步骤对应设置内容 1.1 "D:\Beyond Compare 4\BCompare.exe" %base %mine /title1=%bname /t ...

  3. Linux 软件安装卸载命令

    安装方式一: RPM 命令 rpm -qa|grep java  查看java 是否安装 rpm -e --nodeps  软件名   卸载已安装软件 rpm -ivh xxx.rpm   安装 安装 ...

  4. Linux环境变量和本地变量

    每一种编程语言中,我们都会碰到变量的作用域的问题.(比如在函数中定义的变量在函数外不能使用的) BASH 中也有类似的问题,局部变量和环境变量(全局变量). 局部变量是普通的变量,仅在创建它的Shel ...

  5. Njinx配置

    参考地址: NGINX的百度百科:https://baike.baidu.com/item/nginx/3817705?fr=aladdin NGINX的中文网站:http://www.nginx.c ...

  6. linux下怎么删除名称带空格的文件

    linux下怎么删除名称带空格的文件-rm 'mysql bin.000005' 用引号把文件名括起来 某些情况下会出现名称带空格的文件, 如果想要删除的话,直接用rm mysql bin.00000 ...

  7. bzoj2049 [Sdoi2008]Cave 洞穴勘测 link cut tree入门

    link cut tree入门题 首先说明本人只会写自底向上的数组版(都说了不写指针.不写自顶向下QAQ……) 突然发现link cut tree不难写... 说一下各个函数作用: bool isro ...

  8. zabbix 监控项(key)

    Key 描述 返回值 参数 详细说明 agent.hostname 返回被监控端名称 字符串 - 返回配置文件中配置的被监控端的名称 agent.ping 检测被监控端是否存活 1 - 运行中 其他 ...

  9. Netty1

    基于Netty4的HttpServer和HttpClient的简单实现 Netty的主页:http://netty.io/index.html 使用的Netty的版本:netty-4.0.23.Fin ...

  10. rocketmq连接报connect to ip:10909 failed

    一.代码重现如下: 二.错误描述: com.alibaba.rocketmq.client.exception.MQClientException: Send [1] times, still fai ...