题意

给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(998244353\) 取模。

\(1\leq n \leq 10^5\)

思路

设 \(K\) 为 \(k\) 时的答案为 \(ans_k\)

\[ans_k=\sum_{i=1}^na_i2^{n-i}\sum_{j=0}^{k-1}{i-1\choose j}
\]

\(j\) 为在 \(a_i\) 的左边选了多少个数。定义当\(i<j\) 时 \(\displaystyle{i\choose j}=0\) ,即当 \(n<0\) 时 \(\displaystyle{1\over n!}=0\)

有两个\(\sum\) ,导致难以化简,但是我们发现差分后只有一个 \(\sum\)

设 \(d_k=ans_k-ans_{k-1}\) ,则有

\[d_k=\sum_{i=1}^na_i2^{n-i}{i-1\choose k-1}\\
d_k=(k-1)!\sum_{i=1}^na_i2^{n-i}(i-1)!\cdot{1\over{(i-k)!}}
\]

用 \(i+k\) 替换 \(k\) ,并化成卷积形式

\[d_{i+k}=(i+k-1)!a_i2^{n-i}(i-1)!\cdot{1\over{(-k)!}}
\]

其中 \(i\in[1,n],i+k\in[1,n],k\in[1-n,n-1]\)

设 \(\displaystyle A_i=a_i2^{n-i}(i-1)!,B_k={1\over{(-k)!}}\)

\(d_{i+k}=(i+k-1)A_iB_k\)

处理出 \(A,B\) 两多项式,进行卷积求解即可。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long ll;
using namespace std;
const int P=998244353,g=3;
const int N=1<<17|5;
namespace Maths
{
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,y,x),y-=a/b*x;
}
ll Pow(ll a,ll p,ll P)
{
ll res=1;
for(;p>0;p>>=1,(a*=a)%=P)if(p&1)(res*=a)%=P;
return res;
}
ll inv(ll a,ll P){ll x,y;exgcd(a,P,x,y);return (x%P+P)%P;}
};
using namespace Maths;
namespace _NTT
{
const int g=3,P=998244353;
int A[N<<1],B[N<<1];
int w[N<<1],r[N<<1];
void NTT(int *a,int op,int n)
{
FOR(i,0,n-1)if(i<r[i])swap(a[i],a[r[i]]);
for(int i=2;i<=n;i<<=1)
for(int j=0;j<n;j+=i)
for(int k=0;k<i/2;k++)
{
int u=a[j+k],t=(ll)w[op==1?n/i*k:n-n/i*k]*a[j+k+i/2]%P;
a[j+k]=(u+t)%P;
a[j+k+i/2]=(u-t)%P;
}
}
void multiply(int *a,int *b,int *c,int n1,int n2)
{
int n=1;
while(n<n1+n2-1)n<<=1;
FOR(i,0,n1-1)A[i]=a[i];
FOR(i,0,n2-1)B[i]=b[i];
FOR(i,n1,n-1)A[i]=0;
FOR(i,n2,n-1)B[i]=0;
FOR(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
w[0]=1,w[1]=Pow(g,(P-1)/n,P);
FOR(i,2,n)w[i]=(ll)w[i-1]*w[1]%P; NTT(A,1,n),NTT(B,1,n);
FOR(i,0,n-1)A[i]=(ll)A[i]*B[i]%P;
NTT(A,-1,n);
int I=inv(n,P);
FOR(i,0,n1+n2-2)c[i]=((ll)A[i]*I%P+P)%P;
}
};
int A[N],B[N],C[N<<2];
int fac[N],c[N],S;
int n,m; int main()
{
fac[0]=1;FOR(i,1,N-1)fac[i]=(ll)fac[i-1]*i%P;
while(~scanf("%d",&n))
{
FOR(i,0,n)scanf("%d",&c[i]);
scanf("%d",&m);
S=0;
while(m--)
{
int x;
scanf("%d",&x);
S-=x;
if(S<0)S+=P;
}
FOR(i,0,n)A[i]=(ll)c[i]*fac[i]%P;
FOR(i,-n,0)B[i+n]=Pow(S,-i,P)*inv(fac[-i],P)%P;
_NTT::multiply(A,B,C,n+1,n+1);
FOR(i,0,n)printf("%lld ",(C[i+n]*inv(fac[i],P)%P+P)%P);
puts("");
}
return 0;
}

HDU 5829 Rikka with Subset(NTT)的更多相关文章

  1. HDU - 5829:Rikka with Subset (NTT)

    As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...

  2. HDU 6092 Rikka with Subset(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...

  3. hdu 6092 Rikka with Subset(逆向01背包+思维)

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

  5. HDU 6088 Rikka with Rock-paper-scissors(NTT+欧拉函数)

    题意 \(n\) 局石头剪刀布,设每局的贡献为赢的次数与输的次数之 \(\gcd\) ,求期望贡献乘以 \(3^{2n}\) ,定义若 \(xy=0\) 则,\(\gcd(x,y)=x+y\) 思路 ...

  6. hdu 6092 Rikka with Subset(多重背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...

  7. hdu 5423 Rikka with Tree(dfs)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  8. hdu 5423 Rikka with Tree(dfs)bestcoder #53 div2 1002

    题意: 输入一棵树,判断这棵树在以节点1为根节点时,是否是一棵特殊的树. 相关定义: 1.  定义f[A, i]为树A上节点i到节点1的距离,父节点与子节点之间的距离为1. 2.  对于树A与树B,如 ...

  9. hdu 5631 Rikka with Graph(图)

    n个点最少要n-1条边才能连通,可以删除一条边,最多删除2条边,然后枚举删除的1条边或2条边,用并查集判断是否连通,时间复杂度为O(n^3) 这边犯了个错误, for(int i=0;i<N;i ...

随机推荐

  1. MVC中的Ajax与增删改查(一)

    自入手新项目以来,一直处于加班状态,博客也有两周没更,刚刚完成项目的两个模组,稍有喘息之机,写写关于项目中 的增删改查,这算是一个老生常谈的问题了,就连基本的教材书上都有.刚看书的时候,以为 没什么可 ...

  2. Spark学习之路 (十七)Spark分区

    一.分区的概念 分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务 ...

  3. MySql 学习参考目录

    [1]< MySql 数据类型> [2]< MySql 基础 > [3]< MySql 存储过程 > PS:个人认为,如上总结超值. Good Good Study ...

  4. spiderUI窗口过小解决

    复制以下代码,直接替换此css样式即可: C:\Users\Administrator\AppData\Local\Programs\Python\Python37\Lib\site-packages ...

  5. spriteJS

    https://blog.csdn.net/qq_37261367/article/details/84662028

  6. flask 数据库操作(增删改查)

    数据库操作 现在我们创建了模型,生成了数据库和表,下面来学习常用的数据库操作,数据库操作主要是CRUD,即Create(创建).Read(读取/查询).Update(更新)和Delete(删除). S ...

  7. android textview字体加粗 Android studio最新水平居中和垂直居中

    android textview字体加粗 Android studio最新水平居中和垂直居中 Android中字体加粗在xml文件中使用android:textStyle=”bold”但是不能将中文设 ...

  8. Linux Centos下查看cpu、磁盘、内存使用情况,关闭MySQL日志

    Linux Centos下查看cpu.磁盘.内存使用情况,关闭MySQL日志 lsblk 查看分区和磁盘df -h 查看空间使用情况fdisk -l 分区工具查看分区信息cfdisk /dev/sda ...

  9. jQuery实现无刷新切换主题皮肤功能

    主题皮肤切换功能在很多网站和系统中应用,用户可以根据此功能设置自己喜欢的主题颜色风格,增强了用户体验.本文将围绕如何使用jQuery实现点击无刷新切换主题皮肤功能. 查看演示DEMO:https:// ...

  10. ASP.NET定时调用WebService 运行后台代码

    效果: 通过在网站的Global.asax的Application_Start方法中 加入定时器 定时调用WebService 该WebService的一个方法 负责在后台 向数据库的某个表加入数据 ...