首先,容易得到判断一个子串为“good k-d sequence”的方法:

  • 子串中没有重复元素,且所有元素模d相等。
  • 记mx为除以d的最大值,mn为除以d的最小值,则\(mx-mn<=r-l+k\)。

然后,我们对于每一段极大的元素同模的子串,处理\(d=1\)的情况。

显然,我们需要枚举一个端点。这里,我们从大到小枚举左端点。(当然,从小到大枚举右端点也是可行的)

我们使用单调栈和线段树,可以维护每个位置\(mx-mn\)的值。然后,因为对于每一个位置,\(r\)是固定的,所以我们把\(r\)移到左边。即有不等式\(mx-mn-r<=k-l\)。

然后,我们需要确定最右边的\(mx-mn-r<=k-l\)的元素位置,这个线段树上二分就可以了。

最后还有两个细节:

  • 为避免出现重复元素,线段树上二分时有限制。
  • 特判\(d=0\)的情况。

时间复杂度\(O(nlogn)\)。

#include <bits/stdc++.h>
using namespace std;
const int BAS = 1e9, N = 200010;
struct node {
int mn,tag;
inline void operator += (int x) {
mn += x;
tag += x;
}
inline void reset() {
mn = tag = 0;
}
} t[N << 2];
void push_down(int x) {
t[x<<1] += t[x].tag;
t[x<<1|1] += t[x].tag;
t[x].tag = 0;
}
void push_up(int x) {
if (t[x].tag) push_down(x);
t[x].mn = min(t[x<<1].mn,t[x<<1|1].mn);
}
void modify(int x,int l,int r,int v,int lp,int rp) {
if (lp > r || rp < l) return;
if (lp >= l && rp <= r)
return (void)(t[x] += v);
int mid = (lp + rp) >> 1;
modify(x<<1,l,r,v,lp,mid);
modify(x<<1|1,l,r,v,mid+1,rp);
push_up(x);
}
int dfs(int x,int lim,int v,int lp,int rp) {
if (t[x].mn > v) return -1;
if (lp == rp) return lp;
push_down(x);
int mid = (lp + rp) >> 1;
if (t[x<<1|1].mn <= v && mid + 1 <= lim) {
int res = dfs(x<<1|1,lim,v,mid+1,rp);
if (~res) return res;
}
return dfs(x<<1,lim,v,lp,mid);
}
int n,k,d,arr[N],len;
map<int,int> mp;
int tmp[N];
struct data_sta {
int l,r,val;
inline bool operator < (const data_sta& x) const {
return val < x.val;
}
} st[2][N];
int top[2];
struct data_ans {
int l,r;
inline bool operator < (const data_ans& x) const {
return r - l + 1 != x.r - x.l + 1 ? \
r - l + 1 > x.r - x.l + 1 : l < x.l;
}
};
data_ans solve() {
mp.clear();
data_sta tp;
data_ans res = (data_ans) {len,-1};
int cur = len, rec;
top[0] = top[1] = 0;
for (int i = len ; i >= 1 ; -- i) {
if (mp[tmp[i]]) cur = min(cur,mp[tmp[i]] - 1);
mp[tmp[i]] = i;
tp = (data_sta) {i,i,tmp[i]};
while (top[0] && st[0][top[0]].val < tp.val) {
modify(1,st[0][top[0]].l,st[0][top[0]].r,-st[0][top[0]].val,1,len);
tp.r = st[0][top[0]--].r;
}
st[0][++top[0]] = tp;
modify(1,tp.l,tp.r,tp.val,1,len);
tp = (data_sta) {i,i,tmp[i]};
while (top[1] && st[1][top[1]].val > tp.val) {
modify(1,st[1][top[1]].l,st[1][top[1]].r,st[1][top[1]].val,1,len);
tp.r = st[1][top[1]--].r;
}
st[1][++top[1]] = tp;
modify(1,tp.l,tp.r,-tp.val,1,len);
modify(1,i,i,-i,1,len);
rec = dfs(1,cur,k - i,1,len);
if (~rec) res = min(res,(data_ans) {i,rec});
}
for (int i = 1 ; i <= (len << 2) ; ++ i)
t[i].reset();
return res;
}
int special_solve() {
int res = 0, p = -1;
for (int i = 1, j; i <= n ; i += j) {
j = 1;
while (arr[i+j] == arr[i] && i + j <= n) ++ j;
if (res < j) res = j, p = i;
}
printf("%d %d\n",p,p + res - 1);
return 0;
}
int main() {
scanf("%d%d%d",&n,&k,&d);
for (int i = 1 ; i <= n ; ++ i)
scanf("%d",&arr[i]), arr[i] += BAS ;
if (d == 0) return special_solve();
data_ans res = (data_ans) {1,1}, tp;
for (int i = 1, j ; i <= n ; i += j) {
j = 1;
while (arr[i+j] % d == arr[i] % d && i + j <= n)
++ j;
len = j;
for (int s = 0 ; s < j ; ++ s)
tmp[s+1] = arr[i+s] / d;
tp = solve();
tp.l += i-1, tp.r += i-1;
res = min(res,tp);
}
printf("%d %d\n",res.l,res.r);
return 0;
}

小结:这样一类题目大概就是要怼着式子简化问题。

【做题】CF239E. k-d-sequence——线段树的更多相关文章

  1. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  2. Wow! Such Sequence!(线段树4893)

    Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...

  3. HDU 6047 Maximum Sequence(线段树)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=6047 题目: Maximum Sequence Time Limit: 4000/2000 MS (J ...

  4. Codeforces 438D The Child and Sequence - 线段树

    At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...

  5. ZOJ 4100 浙江省第16届大学生程序设计竞赛 A题 Vertices in the Pocket 线段树+并查集

    正赛的时候完全没看这个题,事后winterzz告诉我他想出来的解法. 首先题意是给出n个点,m次操作. 操作有一种是连接两个点,另一种是求此时再为这个图连k条边,最少和最多能有几个联通块. 最少的求法 ...

  6. Codeforces 486E LIS of Sequence(线段树+LIS)

    题目链接:Codeforces 486E LIS of Sequence 题目大意:给定一个数组.如今要确定每一个位置上的数属于哪一种类型. 解题思路:先求出每一个位置选的情况下的最长LIS,由于開始 ...

  7. K - Japan(线段树)

    Japan plans to welcome the ACM ICPC World Finals and a lot of roads must be built for the venue. Jap ...

  8. 【BZOJ】3038: 上帝造题的七分钟2(线段树+暴力)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=3038 这题我就有得吐槽了,先是线段树更新写错,然后不知哪没pushup导致te,精度问题sq ...

  9. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸

    D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  10. codevs2492上帝造题的七分钟 2(线段树)

    /* 区间修改 区间查询 可以用线段树搞 但是一般的标记下放对这个题好像不合适 只能改叶子 然后更新父亲(虽然跑的有点慢) 小优化:如果某个点是1 就不用再开方了 所以搞一个f[i]标记 i 这个点还 ...

随机推荐

  1. Linux 命令整理-tailf

    1.tailf 跟踪日志文件 常用参数格式: tailf -n logfile 动态跟踪日志文件logfile,最初的时候打印文件的最后10行内容. 实例 查看从倒数多少行的日志信息 2.tail 跟 ...

  2. 岭回归、LASSO与LAR的几何意义

    https://blog.csdn.net/u013524655/article/details/40922303 http://f.dataguru.cn/thread-598486-1-1.htm ...

  3. Rigid Frameworks (画图二分图规律 + DP + 数学组合容斥)

    题意:方格n*m,然后对于每一个格子有3种画法1左对角线2右对角线3不画,求让图形稳定的画法有多少种? 思路:通过手画二分图可以发现当二分图联通时改图满足条件,然后我们对于一个dp[n][m]可以利用 ...

  4. 【2017-2-21】C#分支语句,分支嵌套,变量的作用域

    分支语句 句式:if else(必须是if开头,可以是else if或者else结束,也可以直接结束) if(bool型比较表达式) { 如果上面的条件成立,则执行这里面的代码 } else if(b ...

  5. XML系列之--创建电文格式的XML(一)

    关于XML,学校那会,老师在口中仅仅提及,自己也未曾深入接触过,仅是些将最基本XML文件内容显示在web定义的表格中之类的简单操作,如今项目中的收发电文涉及到复杂XML的操作.趁此契机好好回顾下XML ...

  6. AtCoder Beginner Contest 069 ABCD题

    题目链接:http://abc069.contest.atcoder.jp/assignments A - K-City Time limit : 2sec / Memory limit : 256M ...

  7. 通过 Java 线程堆栈进行性能瓶颈分析

    改善性能意味着用更少的资源做更多的事情.为了利用并发来提高系统性能,我们需要更有效的利用现有的处理器资源,这意味着我们期望使 CPU 尽可能出于忙碌状态(当然,并不是让 CPU 周期出于应付无用计算, ...

  8. GROUP BY 和 ORDER BY 同时使用问题

    GROUP BY 和 ORDER BY一起使用时,ORDER BY要在GROUP BY的后面.

  9. Doing Homework HDU - 1074

    Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every ...

  10. Kattis之旅——Inverse Factorial

    题目意思就是已知n的阶乘,求n. 当输入的阶乘小于10位数的时候,我们可以用long long将字符串转化成数字,直接计算. 而当输入的阶乘很大的时候,我们就可以利用位数去大概的估计n. //Asim ...