【做题】CF239E. k-d-sequence——线段树
首先,容易得到判断一个子串为“good k-d sequence”的方法:
- 子串中没有重复元素,且所有元素模d相等。
- 记mx为除以d的最大值,mn为除以d的最小值,则\(mx-mn<=r-l+k\)。
然后,我们对于每一段极大的元素同模的子串,处理\(d=1\)的情况。
显然,我们需要枚举一个端点。这里,我们从大到小枚举左端点。(当然,从小到大枚举右端点也是可行的)
我们使用单调栈和线段树,可以维护每个位置\(mx-mn\)的值。然后,因为对于每一个位置,\(r\)是固定的,所以我们把\(r\)移到左边。即有不等式\(mx-mn-r<=k-l\)。
然后,我们需要确定最右边的\(mx-mn-r<=k-l\)的元素位置,这个线段树上二分就可以了。
最后还有两个细节:
- 为避免出现重复元素,线段树上二分时有限制。
- 特判\(d=0\)的情况。
时间复杂度\(O(nlogn)\)。
#include <bits/stdc++.h>
using namespace std;
const int BAS = 1e9, N = 200010;
struct node {
int mn,tag;
inline void operator += (int x) {
mn += x;
tag += x;
}
inline void reset() {
mn = tag = 0;
}
} t[N << 2];
void push_down(int x) {
t[x<<1] += t[x].tag;
t[x<<1|1] += t[x].tag;
t[x].tag = 0;
}
void push_up(int x) {
if (t[x].tag) push_down(x);
t[x].mn = min(t[x<<1].mn,t[x<<1|1].mn);
}
void modify(int x,int l,int r,int v,int lp,int rp) {
if (lp > r || rp < l) return;
if (lp >= l && rp <= r)
return (void)(t[x] += v);
int mid = (lp + rp) >> 1;
modify(x<<1,l,r,v,lp,mid);
modify(x<<1|1,l,r,v,mid+1,rp);
push_up(x);
}
int dfs(int x,int lim,int v,int lp,int rp) {
if (t[x].mn > v) return -1;
if (lp == rp) return lp;
push_down(x);
int mid = (lp + rp) >> 1;
if (t[x<<1|1].mn <= v && mid + 1 <= lim) {
int res = dfs(x<<1|1,lim,v,mid+1,rp);
if (~res) return res;
}
return dfs(x<<1,lim,v,lp,mid);
}
int n,k,d,arr[N],len;
map<int,int> mp;
int tmp[N];
struct data_sta {
int l,r,val;
inline bool operator < (const data_sta& x) const {
return val < x.val;
}
} st[2][N];
int top[2];
struct data_ans {
int l,r;
inline bool operator < (const data_ans& x) const {
return r - l + 1 != x.r - x.l + 1 ? \
r - l + 1 > x.r - x.l + 1 : l < x.l;
}
};
data_ans solve() {
mp.clear();
data_sta tp;
data_ans res = (data_ans) {len,-1};
int cur = len, rec;
top[0] = top[1] = 0;
for (int i = len ; i >= 1 ; -- i) {
if (mp[tmp[i]]) cur = min(cur,mp[tmp[i]] - 1);
mp[tmp[i]] = i;
tp = (data_sta) {i,i,tmp[i]};
while (top[0] && st[0][top[0]].val < tp.val) {
modify(1,st[0][top[0]].l,st[0][top[0]].r,-st[0][top[0]].val,1,len);
tp.r = st[0][top[0]--].r;
}
st[0][++top[0]] = tp;
modify(1,tp.l,tp.r,tp.val,1,len);
tp = (data_sta) {i,i,tmp[i]};
while (top[1] && st[1][top[1]].val > tp.val) {
modify(1,st[1][top[1]].l,st[1][top[1]].r,st[1][top[1]].val,1,len);
tp.r = st[1][top[1]--].r;
}
st[1][++top[1]] = tp;
modify(1,tp.l,tp.r,-tp.val,1,len);
modify(1,i,i,-i,1,len);
rec = dfs(1,cur,k - i,1,len);
if (~rec) res = min(res,(data_ans) {i,rec});
}
for (int i = 1 ; i <= (len << 2) ; ++ i)
t[i].reset();
return res;
}
int special_solve() {
int res = 0, p = -1;
for (int i = 1, j; i <= n ; i += j) {
j = 1;
while (arr[i+j] == arr[i] && i + j <= n) ++ j;
if (res < j) res = j, p = i;
}
printf("%d %d\n",p,p + res - 1);
return 0;
}
int main() {
scanf("%d%d%d",&n,&k,&d);
for (int i = 1 ; i <= n ; ++ i)
scanf("%d",&arr[i]), arr[i] += BAS ;
if (d == 0) return special_solve();
data_ans res = (data_ans) {1,1}, tp;
for (int i = 1, j ; i <= n ; i += j) {
j = 1;
while (arr[i+j] % d == arr[i] % d && i + j <= n)
++ j;
len = j;
for (int s = 0 ; s < j ; ++ s)
tmp[s+1] = arr[i+s] / d;
tp = solve();
tp.l += i-1, tp.r += i-1;
res = min(res,tp);
}
printf("%d %d\n",res.l,res.r);
return 0;
}
小结:这样一类题目大概就是要怼着式子简化问题。
【做题】CF239E. k-d-sequence——线段树的更多相关文章
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- Wow! Such Sequence!(线段树4893)
Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 6047 Maximum Sequence(线段树)
题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=6047 题目: Maximum Sequence Time Limit: 4000/2000 MS (J ...
- Codeforces 438D The Child and Sequence - 线段树
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...
- ZOJ 4100 浙江省第16届大学生程序设计竞赛 A题 Vertices in the Pocket 线段树+并查集
正赛的时候完全没看这个题,事后winterzz告诉我他想出来的解法. 首先题意是给出n个点,m次操作. 操作有一种是连接两个点,另一种是求此时再为这个图连k条边,最少和最多能有几个联通块. 最少的求法 ...
- Codeforces 486E LIS of Sequence(线段树+LIS)
题目链接:Codeforces 486E LIS of Sequence 题目大意:给定一个数组.如今要确定每一个位置上的数属于哪一种类型. 解题思路:先求出每一个位置选的情况下的最长LIS,由于開始 ...
- K - Japan(线段树)
Japan plans to welcome the ACM ICPC World Finals and a lot of roads must be built for the venue. Jap ...
- 【BZOJ】3038: 上帝造题的七分钟2(线段树+暴力)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=3038 这题我就有得吐槽了,先是线段树更新写错,然后不知哪没pushup导致te,精度问题sq ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸
D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- codevs2492上帝造题的七分钟 2(线段树)
/* 区间修改 区间查询 可以用线段树搞 但是一般的标记下放对这个题好像不合适 只能改叶子 然后更新父亲(虽然跑的有点慢) 小优化:如果某个点是1 就不用再开方了 所以搞一个f[i]标记 i 这个点还 ...
随机推荐
- sqlserver字符集问题(中文出乱码,排序错误等)
在创建sqlserver 数据库时未指定排序字符集,databases则会使用instances的排序规则.为了支持中文,需要设置成Chinese_PRC_CI_AS. (1)通过sql脚本修改 -- ...
- Unity shader学习之半兰伯特光照模型
半兰伯特光照模型,为Valve公司在开发游戏<半条命>时提出的一种技术,用于解决漫反射光无法到达区域无任凭明暗变化,丢失模型细节表现的问题. 其公式如下: Cdiffuse = Cligh ...
- python 文件路径名,文件名,后缀名的操作
需要使用路径名来获取文件名,目录名,绝对路径等等. 使用os.path 模块中的函数来操作路径名.下面是一个交互式例子来演示一些关键的特性: >>> import os >&g ...
- springmvc静态资源无法加载
springmvc拦截所有请求,用/: <servlet> <servlet-name>springmvc</servlet-name> <servlet-c ...
- 限制访问次数例子和Ajax的some
-- 限制访问次数作业解答 -- -- urls.py 里-- from django.conf.urls import url from django.contrib import admin fr ...
- Python+OpenCV图像处理(十二)—— 图像梯度
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...
- SQL Server 2008 R2 常用系统函数学习
/******************************************* * 聚合函数 *******************************************/ SEL ...
- 【shell脚本】通过遍历文件的一种批量执行shell命令的方法。
在分析数据时,经常会有许多机械重复的命令带入,作为一个半路出家的程序猿,我曾经对这种工作束手无策.不像一个熟手那样举重若轻的分析,感觉自己的生信分析完全是个体力活.为了打开这样的局面,我开始学习如何批 ...
- MySQL笔记(七)远程连接MySQL
mysql 默认只允许 localhost 连接,因此在远程连接服务器上的 mysql 之前,需要做一些设置.在没有设置前,默认是下面的状况,mysql 只能由 localhost(127.0.0.1 ...
- nginx的gzip压缩功能
我们在开发网站的时候,应该要考虑到pv,因为pv比较大可能会造成服务器带宽不够用,进而导致用户体验变差. 这个时候我们就可以考虑用nginx的gzip功能. 在nginx中开启gzip压缩功能很简单, ...