用Bagging优化模型的过程:
1、对于要使用的弱模型(比如线性分类器、岭回归),通过交叉验证的方式找到弱模型本身的最好超参数;
2、然后用这个带着最好超参数的弱模型去构建强模型;
3、对强模型也是通过交叉验证的方式找到强模型的最好超参数(比如弱模型的数量)

对于Bagging、RandomForest、Boosting这些组合算法,默认是用的弱模型是决策树,但是可以通过base_estimator参数调整。

np.linspace() 创建等比数列,生成(start,stop)区间指定元素个数num的list,均匀分布
np.logspace() log分布间距生成list
np.arange() 生成(start,stop)区间指定步长step的list

numpy库:常用基本
https://www.cnblogs.com/smallpi/p/4550361.html

scikit-learn 中文文档
http://cwiki.apachecn.org/display/sklearn/Index
http://sklearn.apachecn.org/#/ (需要FQ)

模型评估: 量化预测的质量
https://blog.csdn.net/marsjhao/article/details/78678276

30分钟学会用scikit-learn的基本回归方法(线性、决策树、SVM、KNN)和集成方法(随机森林,Adaboost和GBRT)
https://blog.csdn.net/u010900574/article/details/52666291

很值得看的特征选择 方法
https://www.cnblogs.com/stevenlk/p/6543628.html

XGboost数据比赛实战之调参篇
https://blog.csdn.net/sinat_35512245/article/details/79700029

Scikit中的特征选择,XGboost进行回归预测,模型优化的完整过程
https://blog.csdn.net/sinat_35512245/article/details/79668363

sklearn之样本生成 make_classification,make_circles和make_moons

常用算法 的基本sklearn命令: Sklearn包含的常用算法的调用

sklearn学习笔记的更多相关文章

  1. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  2. sklearn学习笔记3

    Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...

  3. sklearn学习笔记2

    Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...

  4. sklearn学习笔记1

    Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's s ...

  5. sklearn学习笔记(一)——数据预处理 sklearn.preprocessing

    https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...

  6. sklearn学习笔记之岭回归

    岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病 ...

  7. sklearn学习笔记之开始

    简介   自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了.scikit-learn简称sklearn,支持包括分类.回归.降维和聚类四大机器学习算法.还包含了特征 ...

  8. sklearn学习笔记(1)--make_blobs函数及相应参数简介

    make_blobs方法: sklearn.datasets.make_blobs(n_samples=100,n_features=2,centers=3, cluster_std=1.0,cent ...

  9. Google TensorFlow深度学习笔记

    Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...

随机推荐

  1. Spring Boot Actuator的端点

    Spring Boot Actuator的关键特性是在应用程序里提供众多Web端点,通过它们了解应用程序 运行时的内部状况.有了Actuator,你可以知道Bean在Spring应用程序上下文里是如何 ...

  2. 十、java_IO

    目录: 一.java流式输入/输出原理 二.java流类的分类 三.输入/输出流类 四.常见的节点流和处理流 五.文件流 六.缓冲流 七.数据流 八.转换流 九.Print流 十.Ubject流 一. ...

  3. banner无缝滚动动画,支持左右按钮和小点

    HTML: <div class="box"> <ul> <li class="img_cur" > <a href= ...

  4. range与xrange的区别

    一.Python中range()与xrange()有什么区别 range([start,] stop[, step]),根据start与stop指定的范围以及step设定的步长,生成一个序列 rang ...

  5. MYCAT全局序列

    1.本地文件方式 sequnceHandlerType = 0 /root/data/program/mycat/conf/server.xml   <property name="s ...

  6. 6、JDBC-处理CLOB与BLOB

    Blob 是一个二进制大型对象(文件),在MySQL中有四种 Blob 类型,区别是容量不同 TinyBlob 255B Blob 65KB MediumBlob 16MB LongBlob 4GB ...

  7. Linux记录-TCP状态以及(TIME_WAIT/CLOSE_WAIT)分析(转载)

    1.TCP握手定理 2.TCP状态 l  CLOSED:初始状态,表示TCP连接是“关闭着的”或“未打开的”. l  LISTEN :表示服务器端的某个SOCKET处于监听状态,可以接受客户端的连接. ...

  8. android measure的时候报空指针

    1.使用listview的时候,在代码中动态设置其高度,在android低版本中,这个低版本是以4.4为界,会报measure的空指针,原因是低版本relativelayout有个bug,使用list ...

  9. 通用Excel文件导出工具类

    1:Excel格式 2:ExcelUtil.java import java.io.ByteArrayOutputStream; import java.io.IOException; import ...

  10. maven打包子模块中的class文件

    通常在项目中都会使用maven进行多模块管理,默认被依赖的模块都会以jar包形式被引用.然而在J2EE项目中,当使用了Spring的自动扫描配置时,jar包形式的依赖class将不能被自动装配:< ...