泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU
Matteo Poggi , Filippo Aleotti , Fabio Tosi , Stefano Mattoccia
在CPU上进行实时无监督单目深度估计
Abstract— Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on.This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to state-of-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem.Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-the-art slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.
单个图像的无监督深度估计是一种非常有吸引力的技术,在机器人,自主导航,增强现实等方面具有多种意义。本主题代表了一项非常具有挑战性的任务,深度学习的出现使得能够以优异的成绩解决这一问题。但是,这些架构非常深刻和复杂。 因此,仅通过利用耗电量大的GPU可以实现实时性能,所述GPU不允许在以低功率约束为特征的应用领域中推断深度图。为了解决这个问题,在本文中,我们提出了一种新颖的架构,能够使用从单个输入图像中提取的特征金字塔,在CPU甚至是嵌入式系统上快速推断出精确的深度图。与现有技术类似,我们以无人监督的方式训练我们的网络,将深度估计作为图像重建问题。此外,通过交易效率的准确性,我们的网络允许分别推断大约2 Hz和40 Hz的地图,仍然比大多数最先进的慢速方法更准确。据我们所知,这是第一种在CPU上实现这种性能的方法,即使在嵌入式系统上也能为有效部署无监督单眼深度估计铺平道路。
泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU的更多相关文章
- 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...
- 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping
张宁 GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM - 单 ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators
Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...
- 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...
- 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms
Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...
随机推荐
- maven本地库与私服比对,查找缺失jar包
项目中遇到的一个问题,因为要切换开发环境(新环境不能联网,且私服上的jar包信息不全),需要将本地仓库(项目使用本地仓库能够正常编译)中有而私服上没有的jar包整理出来(名称.版本号等),提供给第三方 ...
- Type Call requires API level 11 (current min is 8)解决办法
解决办法: 1:project-->clean.. 2:右键工程-->Android Tools-->clean lint markers 3:修改AndroidManifest.x ...
- 配置yum软件仓库(redhat 7.0)
第一步:切换到yum配置文件目录 执行:cd /etc/yum.repos.d/ 第二步:创建文件并进行编辑:vi rhel7.repo 写入如下内容:[rhel7] name=rhel7 ##名字随 ...
- 【Android】Android传感器
1.加速度传感器2.磁场传感器3.方向传感器4.陀螺仪传感器5.重力传感器6.线性加速度传感器7.温度传感器8.光线传感器9.距离传感器10.压力传感器11.计步传感器 首先先查看测试的安卓机拥有的传 ...
- 【九天教您南方cass 9.1】 08 绘制等高线及对其处理
同学们大家好,欢迎收看由老王测量上班记出品的cass9.1视频课程 我是本节课主讲老师九天. 我们讲课的教程附件也是共享的,请注意索取测量空间中. [点击索取cass教程]5元立得 (给客服说暗号:“ ...
- maven 打jar 被引用后 出现 cannot resolve symbol 错误 生成jar包形式代码文件组织格式 非springboot文件组织格式
项目A引用项目B A项目中pom引入没有报错,但是:1,idea里面查找到b项目中的代码时,会提示b代码中的引用不正确.提示无法解析语法 解压B的jar,发现目录是: springboot文件组织格式 ...
- Mysql系列五:数据库分库分表中间件mycat的安装和mycat配置详解
一.mycat的安装 环境准备:准备一台虚拟机192.168.152.128 1. 下载mycat cd /softwarewget http:-linux.tar.gz 2. 解压mycat tar ...
- Java如何将每个单词的第一个字符转为大写?
在Java编程中,如何将每个单词的第一个字符转为大写? 以下示例演示如何使用toUpperCase(),appendTail()方法将字符串中每个单词的第一个字母转换为大写字母. package co ...
- 字符串时间与Unix时间戳相互转换
字符串时间与Unix时间戳相互转换 /** * @Author: wangkun * @Date : 2016/1/21 13:43 * @Description : 字符串时间转换为Unix时间戳 ...
- Python 中的map、reduce函数用法
#-*- coding:UTF-8 -*- #map()函数接受两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回 def f(x): retu ...