泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU
Matteo Poggi , Filippo Aleotti , Fabio Tosi , Stefano Mattoccia
在CPU上进行实时无监督单目深度估计
Abstract— Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on.This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to state-of-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem.Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-the-art slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.
单个图像的无监督深度估计是一种非常有吸引力的技术,在机器人,自主导航,增强现实等方面具有多种意义。本主题代表了一项非常具有挑战性的任务,深度学习的出现使得能够以优异的成绩解决这一问题。但是,这些架构非常深刻和复杂。 因此,仅通过利用耗电量大的GPU可以实现实时性能,所述GPU不允许在以低功率约束为特征的应用领域中推断深度图。为了解决这个问题,在本文中,我们提出了一种新颖的架构,能够使用从单个输入图像中提取的特征金字塔,在CPU甚至是嵌入式系统上快速推断出精确的深度图。与现有技术类似,我们以无人监督的方式训练我们的网络,将深度估计作为图像重建问题。此外,通过交易效率的准确性,我们的网络允许分别推断大约2 Hz和40 Hz的地图,仍然比大多数最先进的慢速方法更准确。据我们所知,这是第一种在CPU上实现这种性能的方法,即使在嵌入式系统上也能为有效部署无监督单眼深度估计铺平道路。

泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU的更多相关文章
- 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...
- 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping
张宁 GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM - 单 ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators
Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...
- 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...
- 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms
Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...
随机推荐
- docker部署maven私有仓库 nexus3
docker pull sonatype/nexus3: docker run -d --name nexus3.x --network host -v /volume-data/nexus3/nex ...
- 用命令让vbox的虚拟硬盘文件转换成vmware的vmdk
VirtualBox的生成备份功能只是个系统还原点 这个生成备份功能备份速度非常快,其实它并不是备份,而是相当于xp系统中的建立系统还原点.但是要注意的是如果你的虚拟硬盘文件(***.vdi)在别的V ...
- 阿里云服务器Centos7.4开放80端口的记录
问题: 阿里云服务器安装的是centos7, 搭建网站安装lnmp1.5后发现访问不了, 不明所以, 在一论坛找到关于80端口未开放的原因. 需求: 开放80端口.于是有了下面第一,二,三部分关于开放 ...
- sed学习[参考转载]
一.选项与参数: -n :使用安静(silent)模式.在一般 sed 的用法中,所有来自 STDIN 的数据一般都会被列出到终端上.但如果加上 -n 参数后,则只有经过sed 特殊处理的那一行(或者 ...
- php http请求封装
/** * 发送HTTP请求方法,目前只支持CURL发送请求 * @param string $url 请求URL * @param array $params 请求参数 * @param strin ...
- 永久关闭selinux
selinux这东西,有时候真让人搞不懂. 临时关闭: setenforce 0 getenforce #查看状态是否是disabled 永久关闭: vim /etc/sysconfig/selinu ...
- 12C -- ORA-28040
新安装的12.2数据库,尝试连接数据库的时候,报ora-28040错误: 这是由于12C数据库默认参数(默认支持的客户端版本)设置的原因. 在12C中,SQLNET.ALLOWED_LOGON_VER ...
- mysql常用的一些修改命令
修改表字段名称: alter table table_name change column column_name_old column_name_new column_type; mysql注释 ...
- [na][dhcp]dhcp细枝末节&dhcp防攻
回顾了下,真是以前是一种感觉以后是一种感觉. 特点: 1.dhcp服务器上的配置的网关不一定要有这个ip 2.dhcp服务只是个类似数据库而已(如果不在一个lan). 3. 如果dhcp不在一个lan ...
- argparse - 命令行选项与参数解析
argparse模块作为optparse的一个替代被添加到Python2.7.argparse的实现支持一些不易于添加到optparse以及要求向后不兼容API变化的特性,因此以一个新模块添加到标准库 ...