泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU
Matteo Poggi , Filippo Aleotti , Fabio Tosi , Stefano Mattoccia
在CPU上进行实时无监督单目深度估计
Abstract— Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on.This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to state-of-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem.Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-the-art slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.
单个图像的无监督深度估计是一种非常有吸引力的技术,在机器人,自主导航,增强现实等方面具有多种意义。本主题代表了一项非常具有挑战性的任务,深度学习的出现使得能够以优异的成绩解决这一问题。但是,这些架构非常深刻和复杂。 因此,仅通过利用耗电量大的GPU可以实现实时性能,所述GPU不允许在以低功率约束为特征的应用领域中推断深度图。为了解决这个问题,在本文中,我们提出了一种新颖的架构,能够使用从单个输入图像中提取的特征金字塔,在CPU甚至是嵌入式系统上快速推断出精确的深度图。与现有技术类似,我们以无人监督的方式训练我们的网络,将深度估计作为图像重建问题。此外,通过交易效率的准确性,我们的网络允许分别推断大约2 Hz和40 Hz的地图,仍然比大多数最先进的慢速方法更准确。据我们所知,这是第一种在CPU上实现这种性能的方法,即使在嵌入式系统上也能为有效部署无监督单眼深度估计铺平道路。

泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU的更多相关文章
- 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...
- 泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping
张宁 GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping GEN-SLAM - 单 ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators
Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...
- 泡泡一分钟:Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization 利用回归森林中的点和线进行RGB-D ...
- 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms
Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...
随机推荐
- MongoDB中MapReduce介绍与使用
一.简介 在用MongoDB查询返回的数据量很大的情况下,做一些比较复杂的统计和聚合操作做花费的时间很长的时候,可以用MongoDB中的MapReduce进行实现 MapReduce是个非常灵活和强大 ...
- EasyUI tab问题记录
1. 关闭当前tab 此代码放在 布局页中,然后所有的页面都可以随时关闭tab了,适当的根据你的项目,更改下js <script> function closetab(subtitle ...
- Mybatis 记录
1. #{}, ${}两种传参数方式的区别 1) ${} 会将传入的参数完全拼接到sql语句中,也就是相当于一个拼接符号. 也就是,最后的处理方式就相当于 String sql = select * ...
- Ansible 使用普通用户远程执行playbook
设置ansible使用普通用户jsxge远程连接执行playbook 1. ansible控制端创建普通用户jsxgecd /homeuseradd jsxgechown -R jsxge.wheel ...
- Source Insight 常用设置
1.背景色选择 要改变背景色Options->preference->windows background->color设置背景色2.解决字符等宽对齐问题 SIS默认字体是VE ...
- Ubuntu 卸载重装 IntelliJ Idea Community
参考: https://stackoverflow.com/questions/22983101/how-to-uninstall-intellij-idea-on-ubuntu-13-10 @SLH ...
- Android Launcher分析和修改3——Launcher启动和初始化
前面两篇文章都是写有关Launcher配置文件的修改,代码方面涉及不多,今天开始进入Launcher代码分析. 我们开机启动Launcher,Launcher是由Activity Manager启动的 ...
- 【Java】移动JDK路径后,修改环境变量不生效 Error: could not open `C:\Program Files\Java\jre1.8.0_131\lib\amd64\jvm.cfg'
场景: JDK原先装在C盘的,现在移动到了D盘,并在环境变量修改了%JAVA_HOME%的新路径,但是CMD中输入java后依然报错. Error: could not open `C:\Progra ...
- 瀑布 敏捷 精益 devops
敏捷: 分工角色 大项目分小项目 每个节点时间设置里程碑 Scrum实施的核心可以概括为“化繁为简”,从几个维度解释下: 团队角色的定义,将团队人员定义为三个角色,Scrum Master(主 ...
- hdoj:2046
#include <iostream> using namespace std; long long fib(int n) { ) ; ) ; ; ; ) { long long f3 = ...