lca的好题!网上用st表和离线解的比较多,用树上倍增也是可以做的

不知道错在哪里,等刷完了这个专题再回来看

题解链接https://blog.csdn.net/Sd_Invol/article/details/9572423

/*
给一颗点权树,求出一个点对(x,y)之间的max{A,B,C}
A:x到lca路径上的最大差值
B:lca到y路径上的最大差值
C:x到y路径上的最大差值
需要维护的值,x结点到的祖先,x结点到祖先路径上的最大值,最小值,x结点到路径上的最大收益,最小收益(可以是负数)
对于每个询问x->y:A:x到祖先的最大收益
B:y到祖先的最小收益的负值
C:x到lca的最大值减去lca到y的最小值
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 50005
struct Edge{
int x,next;
}e[maxn<<];
int head[maxn],tot,n,q;
inline void addedge(int u,int v){
e[tot].x=v;
e[tot].next=head[u];
head[u]=tot++;
}
int d[maxn],f[maxn][],a[maxn];//深度,祖先,点权
int fm[maxn][],fn[maxn][],sm[maxn][],sn[maxn][];//最大值,最小值,最大收益,最小收益
void init(){
tot=;
memset(head,-,sizeof head);
}
void dfs(int x,int fa,int dep){
d[x]=dep,f[x][]=fa;
for(int i=head[x];i!=-;i=e[i].next)
if(fa!=e[i].x) dfs(e[i].x,x,dep+);
}
int query(int x,int y){
int i,xx=,yy=,X=a[x],Y=a[y];//x侧最大收益,y侧最小收益,x侧最小值,y侧最大值
i=;
while(d[x]!=d[y]){//拉倒同一高度
if(abs(d[x]-d[y]) >= <<i)
if(d[y]<d[x])
xx=max(max(xx,sm[x][i]),fm[x][i]-X),X=min(X,fn[x][i]),x=f[x][i];
else
yy=min(min(yy,sn[y][i]),fn[y][i]-Y),Y=max(Y,fm[y][i]),y=f[y][i];
--i;
}
if(x==y) return max(max(xx,-yy),Y-X);
i=;
while(i>=){
if(f[x][i] && f[y][i] && f[x][i]!=f[y][i]){
xx=max(max(xx,sm[x][i]),fm[x][i]-X),X=min(X,fn[x][i]),x=f[x][i];
yy=min(min(yy,sn[y][i]),fn[y][i]-Y),Y=max(Y,fm[y][i]),y=f[y][i];
}
--i;
}
i=;//这里还要跳一次
xx=max(max(xx,sm[x][i]),fm[x][i]-X),X=min(X,fn[x][i]),x=f[x][i];
yy=min(min(yy,sn[y][i]),fn[y][i]-Y),Y=max(Y,fm[y][i]),y=f[y][i];
return max(max(xx,-yy),Y-X);
}
void work(){
int x,y;
init();
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<n;i++){
scanf("%d%d",&x,&y);
addedge(x,y);addedge(y,x);
}
dfs(,,);
fm[][]=fn[][]=a[];
sm[][]=-<<;sn[][]=<<;
for(int i=;i<=n;i++){//先打初始状态
fm[i][]=max(a[i],a[f[i][]]);//和父亲比较
fn[i][]=min(a[i],a[f[i][]]);
sm[i][]=max(,a[f[i][]]-a[i]);//要么是0,要么赚了钱
sn[i][]=min(,a[f[i][]]-a[i]);//要么是0,要么是亏了钱
}
for(int j=;(<<j)<n;j++)//再打剩下状态
for(int i=;i<=n;i++){
int tmp=f[i][j-];//中间态
f[i][j]=f[tmp][j-];
fm[i][j]=max(fm[i][j-],fm[tmp][j-]);
fn[i][j]=min(fm[i][j-],fm[tmp][j-]);
sm[i][j]=max(max(sm[i][j-],sm[tmp][j-]),fm[tmp][j-]-fn[i][j-]);//最大收益要么是两段间的最大收益,要么是祖先段的最大收益减去子孙段的最小收益
sn[i][j]=min(min(sn[i][j-],sn[tmp][j-]),fn[tmp][j-]-fm[i][j-]);//最小收益相反
}
scanf("%d",&q);
while(q--){
scanf("%d%d",&x,&y);
printf("%d\n",query(x,y));
}
}
int main(){
work();
return ;
}

poj3728 倍增法lca 好题!的更多相关文章

  1. Codeforces 519E A and B and Lecture Rooms [倍增法LCA]

    题意: 给你一棵有n个节点的树,给你m次询问,查询给两个点,问树上有多少个点到这两个点的距离是相等的.树上所有边的边权是1. 思路: 很容易想到通过记录dep和找到lca来找到两个点之间的距离,然后分 ...

  2. 倍增法-lca codevs 1036 商务旅行

    codevs 1036 商务旅行  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 某首都城市的商人要经常到各城镇去做生意 ...

  3. 倍增法lca

    ][N],siz[N];//rt数组需要在dfs之前置-1. void dfs(int pos,int deep){ dep[pos]=deep; siz[pos]=; for(edge *it=ad ...

  4. poj1470 LCA倍增法

    倍增法模板题 #include<iostream> #include<cstring> #include<cstdio> #include<queue> ...

  5. 最近公共祖先算法LCA笔记(树上倍增法)

    Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...

  6. 浅谈倍增法求解LCA

    Luogu P3379 最近公共祖先 原题展现 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数 \(N,M,S\),分别表示树的结点个数.询问 ...

  7. lca入门———树上倍增法(博文内含例题)

    倍增求LCA: father[i][j]表示节点i往上跳2^j次后的节点 可以转移为 father[i][j]=father[father[i][j-1]][j-1] 整体思路: 先比较两个点的深度, ...

  8. 倍增法求LCA(最近公共最先)

    对于有根树T的两个结点u.v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,根据定义可以看出14和15的最近公共祖先是10,   15和16的最近公共 ...

  9. hdu2586 lca倍增法

    倍增法加了边的权值,bfs的时候顺便把每个点深度求出来即可 #include<iostream> #include<cstring> #include<cstdio> ...

随机推荐

  1. Python介绍以及安装

    Python介绍以及安装 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 借用我的导师的一句话:当你看到这篇文章的时候,那么恭喜你,你已经是踏入了开发的大门!欢迎加入:高级运维工程师 ...

  2. CentOS6.x下源码安装MySQL5.5

    1. 更新yum源:http://www.cnblogs.com/vurtne-lu/p/7405931.html 2. 卸载原有的mysql数据库 [root@zabbix ~]# yum -y r ...

  3. RocketMQ之消息幂等

    幂等(idempotent.idempotence)是一个数学与计算机学概念,常见于抽象代数中. 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同. 首先我们了解一下什么是 ...

  4. ssm框架结构的搭建

    ssm框架结构的搭建

  5. log4j入门

    日志是应用软件中不可缺少的部分,Apache的开源项目log4j是一个功能强大的日志组件,提供方便的日志记录.在apache网站:jakarta.apache.org/log4j 可以免费下载到Log ...

  6. 使用 CSS3 的 box-sizing 属性设置元素大小包含 border 与 padding

    Ø  默认情况下,内部元素(如:input)的宽度或高度,是不会包含元素的边框和内边距的,这时就需要使用 box-sizing 属性设置该元素. Ø  box-sizing 是 CSS3 的属性,可以 ...

  7. Telnet Protocol Specification

    Network Working Group J. Postel Request for Comments: 854 J. Reynolds ISI Obsoletes: NIC 18639 May 1 ...

  8. 七、UART

    7.1 介绍 UART(Universal Asynchronous Receiver Transmitter),通用异步收发器,用来传输穿行数据时 UART 之间以全双工方式传输数据,连线方法只有 ...

  9. Extmail 批量添加邮箱用户

    Extmail  设置批量添加邮箱用户 需要修改  userctl.pl  文件 修改 userctl.pl 文件 cd /var/www/extsuite/extman/tools 编辑 userc ...

  10. Postfix 邮件服务 - 邮箱组件 cyrus-sasl

    cyrus-sasl 简单认证安全层, SASL主要是用于SMTP认证.cyrus-sasl(Simple Authentication Security Layer)简单认证安全层, SASL主要是 ...