最近在忙毕业设计,只能偶尔更新博客........

一、像素的算术运算

像素的算术运算涉及加减乘除等基本运算(要进行算术运算,两张图片的形状(shape)必须一样)

代码如下:

#像素的算术运算(加、减、乘、除)   两张图片必须shape一致
import cv2 as cv
def add_demo(m1, m2): #像素的加运算
dst = cv.add(m1, m2)
cv.imshow("add_demo", dst)
def subtract_demo(m1, m2): #像素的减运算
dst = cv.subtract(m1, m2)
cv.imshow("subtract_demo", dst)
def divide_demo(m1, m2): #像素的除法运算
dst = cv.divide(m1, m2)
cv.imshow("divide_demo", dst)
def multiply_demo(m1, m2): #像素的乘法运算
dst = cv.multiply(m1, m2)
cv.imshow("multiply_demo", dst) src1 = cv.imread('E:\imageload\LinuxLogo.jpg')
src2 = cv.imread('E:\imageload\WindowsLogo.jpg')
cv.imshow('image1', src1)
cv.imshow('image2', src2) add_demo(src1, src2)
subtract_demo(src1, src2)
divide_demo(src1, src1)
multiply_demo(src1, src2) cv.waitKey(0)
cv.destroyAllWindows()

运行结果:

注意:

1.这里的的像素运算指的是多维数组对应的值进行加减乘除运算,前提是两张图片必须shape、size一样

2.在相除的时候,一个很小的数除以很大的数结果必然小,所以得出的图像几乎全黑。(黑色为0,白色为255)

3.在相乘的时候,图案“Linux”边缘上的像素并不稳定

二、像素的逻辑运算

像素的逻辑运算涉及与、或、非、异或等基本运算(要进行逻辑运算,两张图片的形状(shape)必须一样)

这里主要展示与或非的逻辑运算

代码如下:

#像素的逻辑运算(与、或、非)   两张图片必须shape一致
import cv2 as cv
def and_demo(m1, m2): #与运算 每个像素点每个通道的值按位与
dst = cv.bitwise_and(m1, m2)
cv.imshow("and_demo", dst)
def or_demo(m1, m2): #或运算 每个像素点每个通道的值按位或
dst = cv.bitwise_or(m1, m2)
cv.imshow("or_demo", dst)
def not_demo(m1): #非运算 每个像素点每个通道的值按位取反
dst = cv.bitwise_not(m1)
cv.imshow("not_demo", dst) src1 = cv.imread('E:\imageload\LinuxLogo.jpg')
src2 = cv.imread('E:\imageload\WindowsLogo.jpg')
cv.imshow('image1', src1)
cv.imshow('image2', src2) and_demo(src1, src2)
or_demo(src1, src2)
not_demo(src1) cv.waitKey(0)
cv.destroyAllWindows()

运行结果:

注意:这里的逻辑运算是按照像素点的各通道的值按二进制形式按位与或非进行运算的

三、调节图片对比度和亮度

代码如下:

#调节图片对比度和亮度
import cv2 as cv
import numpy as np
def contrast_brightness_image(img1, ratio, b): #第2个参数rario为对比度 第3个参数b为亮度
h, w, ch = img1.shape
img2 = np.zeros([h, w, ch], img1.dtype) # 新建的一张全黑图片和img1图片shape类型一样,元素类型也一样
dst = cv.addWeighted(img1, ratio, img2, 1 - ratio, b)
cv.imshow("csecond", dst)
src = cv.imread("E:\imageload\example.png")
cv.imshow("first", src)
contrast_brightness_image(src, 0.1, 10)
cv.waitKey(0)
cv.destroyAllWindows()

运行结果:

注意:help(cv2.addWeighted)可得到.addWeighted函数的官方解释。

函数addWeighted的原型:addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst

src1表示需要加权的第一个数组(上述例子就是图像矩阵)

alpha表示第一个数组的权重

src2表示第二个数组(和第一个数组必须大小类型相同)

beta表示第二个数组的权重

gamma表示一个加到权重总和上的标量值

即输出后的图片矩阵:dst = src1*alpha + src2*beta + gamma;

Python+OpenCV图像处理(五)—— 像素运算的更多相关文章

  1. Python+OpenCV图像处理(一)

    Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() ...

  2. Python+OpenCV图像处理(一)——读取显示一张图片

    先在此处先声明,后面学习python+opencv图像处理时均参考这位博主的博文https://blog.csdn.net/u011321546/article/category/7495016/2? ...

  3. Python+OpenCV图像处理(十五)—— 圆检测

    简介: 1.霍夫圆变换的基本原理和霍夫线变换原理类似,只是点对应的二维极径.极角空间被三维的圆心和半径空间取代.在标准霍夫圆变换中,原图像的边缘图像的任意点对应的经过这个点的所有可能圆在三维空间用圆心 ...

  4. Python+OpenCV图像处理(八)—— 图像直方图

    直方图简介:图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素.还不明白?就是统计一幅图某个亮度像素数量.比如对于灰度值12,一幅图里面有2000 个像 ...

  5. Python+OpenCV图像处理(十四)—— 直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...

  6. Python+OpenCV图像处理(十)—— 图像二值化

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...

  7. Python+OpenCV图像处理(十六)—— 轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def c ...

  8. Python+OpenCV图像处理(十一)—— 图像金字塔

    简介:图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构.简单来说,图像金字塔就是用来进行图像缩放的. 进行图像缩放可以用图像金字塔,也可以使用 ...

  9. Python+OpenCV图像处理(九)—— 模板匹配

    百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...

随机推荐

  1. gh-ost:不一样的在线表结构变更

    简介: 2016年8月份,shlomi-noach在GitHub Engineering发文宣布gh-ost开源.gh-ost是什么?一个不依赖触发器实现的在线表结构变更工具. 对于数据库运维人员来说 ...

  2. 使用python实现日志功能

    Python脚本日志系统   Python通过logging模块提供日志功能,关于logging模块的使用网络上已经有很多详细的资料,这里要分享的是怎样在实际工程中使用日志功能. 假设要开发一个自动化 ...

  3. 【BP算法】

    一.符号定义:  al: 第l层的输出值(经过了激活函数).在DNN中是向量,在CNN中是张量. σ:激活函数的表达形式. zl: 第l层的输出值(未经过激活函数).在DNN中是向量,在CNN中是张量 ...

  4. 20165236 第六周Java学习总结

    20165236 第六周Java学习总结 一. 第八章内容: 1.String 类: String对象.常量对象:字符串并置: 常用方法: length,equals,startsWith,compa ...

  5. Oracle(1)之虚拟机下安装与简单使用

    Oracle介绍与安装 简介 Oracle 数据库系统是美国 ORACLE 公司(甲骨文)提供的以分布式数据库为核心的一组软件产品,是目前最流行的客户/服务器 (CLIENT/SERVER) 或 B/ ...

  6. bcolz的新操作

    1.直接修改 eg:把data.bcolz文件中A列为0的数据填充为1000. data = bcolz.open("data.bcolz", "a") #以& ...

  7. javaScript 数组迭代方法

    map 方法 解释:map即映射,返回对每项操作后组成的新数组 let arr=[1,2,3,4,5,6,7,8]; let newArr=arr.map((item)=>{ if(item&g ...

  8. windows go dll 框架

    乘着还没有添加商业功能之前,先给大家把福利分享了 希望有需要的朋友能够用的上 这个框架是在用windows平台,GO做的http/https服务,调用dll现有的库接口实现特定功能的大框架 //dll ...

  9. (已解决)Xcode 运行cocos2dx弹出内部错误对话框(Internal Error)

    cocos2dx未捕获的异常升高.选择“继续”继续运行在一个不一致的状态.选择“崩溃”停止应用和崩溃报告一个错误文件. 莫名其妙,代码没有报错,运行时却弹出(内部错误)对话框出来: 再看看崩溃的底层代 ...

  10. RNN的深入理解

    针对有着前后序列关系的数据,比如说随着时间变化的数据,显然使用rnn的效果会更好. 循环神经网络的简单结构如下图:简单表示是左边这幅图,展开来看就是右边对每个时刻的数据的处理.单层的RNN网络只有一个 ...