青蛙跳N阶(变态跳)
https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387
描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解析
关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:
f(1) = 1
f(2) = f(2-1) + f(2-2) //f(2-2) 表示2阶一次跳2阶的次数。
f(3) = f(3-1) + f(3-2) + f(3-3)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
代码
//位移操作
public class Solution {
public int JumpFloorII(int target) {
if (target <= 0) {
return 0;
}
return 1 << (target - 1);
}
}
//简单递归
public class Solution {
public int JumpFloorII(int target) {
if (target <= 0) {
return -1;
} else if (target == 1) {
return 1;
} else {
return 2 * JumpFloorII(target - 1);
}
}
}
//自己写的
public class Solution {
public int JumpFloorII(int target) {
if (target <= 0) {
return 0;
} else if (target == 1) {
return 1;
} else if (target == 2) {
return 2;
} else if (target == 3) {
return 4;
}
int sum = 0;
int startIndex = 1;
while (startIndex < target) {
sum += JumpFloorII(target - startIndex);
startIndex++;
}
return sum + 1;
}
}
自己写的思路:其实也是f(n) = f(n - 1) + f(n - 2) .....+ f(n - n);
这里的f(n - n),其实是一条跳n阶,步长为n,所以就是1。
青蛙跳N阶(变态跳)的更多相关文章
- 剑指offer例题——跳台阶、变态跳台阶
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...
- 7、斐波那契数列、跳台阶、变态跳台阶、矩形覆盖------------>剑指offer系列
题目:斐波那契数列 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). f(n) = f(n-1) + f(n-2) 基本思路 这道题在剑指offe ...
- 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)
首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...
- 剑指offer 09变态跳台阶
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public stati ...
- 一只青蛙一次可以跳1阶或者2阶,n阶,有多少种到达终点的方式。
前两天面试遇到的一个题,当时没有想清楚,今天想了一下,po出来: # -*-encoding:utf-8-*- import sys end = 0 # 终点 cnt = 0 # 统计组合方式 def ...
- 剑指offer 面试题10.2:青蛙变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 编程思想 因为n级台阶,第一步有n种跳法:跳1级.跳2级.到跳n级跳1级,剩下 ...
- 《剑指offer》— JavaScript(9)变态跳台阶
变态跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 实现代码 function jumpFloor(number) { ...
- [剑指Offer]2.变态跳台阶
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...
- 剑指offer——变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳 ...
随机推荐
- Go 灵活多变的切片Slice
我们知道数组定义好之后其长度就无法再修改,但是,在实际开发过程中,有时候我们并不知道需要多大的数组,我们期望数组的长度是可变的, 在 Go 中有一种数据结构切片(Slice) 解决了这个问题,它是可变 ...
- 【Python】【数据库】
#[[数据库]]'''MySQL是Web世界中使用最广泛的数据库服务器.SQLite的特点是轻量级.可嵌入,但不能承受高并发访问,适合桌面和移动应用.而MySQL是为服务器端设计的数据库,能承受高并发 ...
- 小程序学习一 .json 文件配置
微信小程序——配置 以下就是小编对小程序配置的资料进行的系统的整理,希望能对开发者有帮助. 我们使用app.json文件来对微信小程序进行全局配置,决定页面文件的路径.窗口表现.设置网络超时时间.设置 ...
- Linux下的压缩解压缩命令详解及实例
实例:压缩服务器上当前目录的内容为xxx.zip文件 zip -r xxx.zip ./* 解压zip文件到当前目录 unzip filename.zip ====================== ...
- 使用openpyxl的styles,实现写入值时加背景色
所用文件.数据和上一节代码中用的一致 本次直接贴代码 from openpyxl.styles import fills from openpyxl import load_workbook clas ...
- mysql 5.7.18 winx64安装配置方法
在mysql-5.7.18-winx64文件夹下新建my.ini文件 [mysql] # 设置mysql客户端默认字符集 default-character-set=utf8 [mysqld] #设置 ...
- C#6.0 语法
属性表达式 属性值初始化 public string name {get;set;} = "张三"; 函数表达式 NULL检查运算符 var aa = Created?.Date; ...
- leecode第五十九题(螺旋矩阵 II)
class Solution { public: vector<vector<int>> generateMatrix(int n) { )//特殊情况 { vector< ...
- Codeforces 551 E - GukiZ and GukiZiana
E - GukiZ and GukiZiana 思路:分块, 块内二分 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC ...
- 在线html编辑器
1.http://liveweave.com/ 2.有时间研究下这个. http://dabblet.com/gist/4034534 3.10个免费的在线编辑器. https://www.ev这个需 ...