标准化数据-StandardScaler
StandardScaler----计算训练集的平均值和标准差,以便测试数据集使用相同的变换
官方文档:
class sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)
Standardize features by removing the mean and scaling to unit variance
通过删除平均值和缩放到单位方差来标准化特征
The standard score of a sample x is calculated as:
样本x的标准分数计算如下:
z = (x - u) / s
where u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False.
其中u是训练样本的均值,如果with_mean=False,则为0
s是训练样本的标准偏差,如果with_std=False,则为1
Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the transform method.
Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual features do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance).
For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected.
This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean=False to avoid breaking the sparsity structure of the data.
Read more in the User Guide.
| Parameters: |
|
|---|---|
| Attributes: |
|
See also
scale- Equivalent function without the estimator API.
sklearn.decomposition.PCA- Further removes the linear correlation across features with ‘whiten=True’.
Notes
NaNs are treated as missing values: disregarded in fit, and maintained in transform.
For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.
Examples
>>> from sklearn.preprocessing import StandardScaler
>>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
>>> scaler = StandardScaler()
>>> print(scaler.fit(data))
StandardScaler(copy=True, with_mean=True, with_std=True)
>>> print(scaler.mean_)
[0.5 0.5]
>>> print(scaler.transform(data))
[[-1. -1.]
[-1. -1.]
[ 1. 1.]
[ 1. 1.]]
>>> print(scaler.transform([[2, 2]]))
[[3. 3.]]
Methods方法
fit(X[, y]) |
Compute the mean and std to be used for later scaling. 计算用于以后缩放的mean和std |
fit_transform(X[, y]) |
Fit to data, then transform it. 适合数据,然后转换它 |
get_params([deep]) |
Get parameters for this estimator. |
inverse_transform(X[, copy]) |
Scale back the data to the original representation |
partial_fit(X[, y]) |
Online computation of mean and std on X for later scaling. |
set_params(**params) |
Set the parameters of this estimator. |
transform(X[, y, copy]) |
Perform standardization by centering and scaling 通过居中和缩放执行标准化 |
__init__(copy=True, with_mean=True, with_std=True)[source]
fit(X, y=None)[source]-
Compute the mean and std to be used for later scaling.
Parameters: - X : {array-like, sparse matrix}, shape [n_samples, n_features]
-
The data used to compute the mean and standard deviation used for later scaling along the features axis.
- y
-
Ignored
fit_transform(X, y=None, **fit_params)[source]-
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
使用可选参数fit_params是变换器适合X和Y,并返回X的变换版本
Parameters: - X : numpy array of shape [n_samples, n_features]
-
Training set.
- y : numpy array of shape [n_samples]
-
Target values.
Returns: - X_new : numpy array of shape [n_samples, n_features_new]
-
Transformed array.
get_params(deep=True)[source]-
Get parameters for this estimator.
Parameters: - deep : boolean, optional
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
-
Parameter names mapped to their values.
inverse_transform(X, copy=None)[source]-
Scale back the data to the original representation
Parameters: - X : array-like, shape [n_samples, n_features]
-
The data used to scale along the features axis.
- copy : bool, optional (default: None)
-
Copy the input X or not.
Returns: - X_tr : array-like, shape [n_samples, n_features]
-
Transformed array.
partial_fit(X, y=None)[source]-
Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when fit is not feasible due to very large number of n_samples or because X is read from a continuous stream.
The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. “Algorithms for computing the sample variance: Analysis and recommendations.” The American Statistician 37.3 (1983): 242-247:
Parameters: - X : {array-like, sparse matrix}, shape [n_samples, n_features]
-
The data used to compute the mean and standard deviation used for later scaling along the features axis.
- y
-
Ignored
set_params(**params)[source]-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.Returns: - self
transform(X, y=’deprecated’, copy=None)[source]-
Perform standardization by centering and scaling
Parameters: - X : array-like, shape [n_samples, n_features]
-
The data used to scale along the features axis.
- y : (ignored)
-
Deprecated since version 0.19: This parameter will be removed in 0.21.
- copy : bool, optional (default: None)
-
Copy the input X or not.
标准化数据-StandardScaler的更多相关文章
- numpy数组-标准化数据
标准化数据的公式: (数据值 - 平均数) / 标准差 import numpy as np employment = np.array([ 55.70000076, 51.40000153, 50. ...
- sklearn 标准化数据的方法
Sklearn 标准化数据 from __future__ import print_function from sklearn import preprocessing import numpy a ...
- pytorch torchversion标准化数据
新旧标准差的关系
- 利用 pandas 进行数据的预处理——离散数据哑编码、连续数据标准化
数据的标准化 数据标准化就是将不同取值范围的数据,在保留各自数据相对大小顺序不变的情况下,整体映射到一个固定的区间中.根据具体的实现方法不同,有的时候会映射到 [ 0 ,1 ],有时映射到 0 附近的 ...
- TGCA数据的标准化以及差异分析--转载
转载果子学生信 https://mp.weixin.qq.com/s/Ph1O6V5RkxkyrKpVmB5ODA 前面我们从GDC下载了TCGA肿瘤数据库的数据,也能够把GDC下载的多个TCGA文 ...
- Matlab数据标准化——mapstd、mapminmax
Matlab神经网络工具箱中提供了两个自带的数据标准化处理的函数——mapstd和mapminmax,本文试图解析一下这两个函数的用法. 一.mapstd mapstd对应我们数学建模中常使用的Z-S ...
- Scikit-Learn模块学习笔记——数据预处理模块preprocessing
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...
- 使用sklearn进行数据挖掘-房价预测(4)—数据预处理
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...
- Scikit-learn数据变换
转载自:https://blog.csdn.net/Dream_angel_Z/article/details/49406573 本文主要是对照scikit-learn的preprocessing章节 ...
随机推荐
- resure挽救笔记本系统和一些相关的操作记录
使用fedora23很久了, 但是感觉不是很流畅, 出现了一些不太稳定的体验, 所以想改到centos7. 因为centos7的很多东西 跟 fedora23 很相近了. 所以应该是无缝过渡 是选择3 ...
- 轻重搭配|计蒜客2019蓝桥杯省赛 B 组模拟赛(一)
样例输入: 6 1 9 7 3 5 5 样例输出: 4 思路:贪心,选错贪心思路,只能过一小部分数据,正确贪心思路:从前一半遍历,在后一半中找到比当前元素的两倍大的数(因为这里指针不会后移,所以可以采 ...
- UVALive 7501 Business Cycle(二分)题解
题意:n个数,有一个起始值,按顺序从第一个开始不断循环取数,如果取完后相加小于0就变为0,最多取p个数,问你得到大于等于值g所需要的最小起始值为多少 思路:这题目爆long long爆的毫无准备,到处 ...
- SCU 4437 Carries(二分乱搞)题解
题意:问任意两对ai,aj相加的总进位数为多少.比如5,6,95分为(5,6)(5,95)(6,95),进位数 = 1 + 2 + 2 = 5 思路:显然暴力是会超时的.我们可以知道总进位数等于每一位 ...
- SPOJ 694 DISUBSTR - Distinct Substrings
思路 求本质不同的子串个数,总共重叠的子串个数就是height数组的和 总子串个数-height数组的和即可 代码 #include <cstdio> #include <algor ...
- Docker3之Swarm
Make sure you have published the friendlyhello image you created by pushing it to a registry. We’ll ...
- 原生JS取代一些JQuery方法的简单实现
原生JS取代一些JQuery方法的简单实现 下面小编就为大家带来一篇原生JS取代一些JQuery方法的简单实现.小编觉得挺不错的,现在就分享给大家,也给大家做个参考.一起跟随小编过来看看吧 1.选 ...
- 使用 jenkins 搭建CI/CD流水线 (MAC)
如何搭建持续集成/持续交付平台?? 如何使用jenkins搭建持续交付流水线,以及和其他工具(如artifactory)集成?如何使用元数据,记录软件发布过程的构建信息,测试结果,并用rest Api ...
- 【Java】【线程】
/* 栗子 通过Runnable接口实现简历线程实例 */ class Dog implements Runnable{ //重写run函数 public void run(){ int times ...
- python网络编程基础之socket粘包现象
粘包现象两种 登陆 #服务端import json import socket server=socket.socket()#创建socket对象 ip_port=('127.0.0.1',8001) ...