标准化数据-StandardScaler
StandardScaler----计算训练集的平均值和标准差,以便测试数据集使用相同的变换
官方文档:
class sklearn.preprocessing.
StandardScaler
(copy=True, with_mean=True, with_std=True)
Standardize features by removing the mean and scaling to unit variance
通过删除平均值和缩放到单位方差来标准化特征
The standard score of a sample x is calculated as:
样本x的标准分数计算如下:
z = (x - u) / s
where u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of the training samples or one if with_std=False.
其中u是训练样本的均值,如果with_mean=False,则为0
s是训练样本的标准偏差,如果with_std=False,则为1
Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the transform method.
Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual features do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance).
For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected.
This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean=False to avoid breaking the sparsity structure of the data.
Read more in the User Guide.
Parameters: |
|
---|---|
Attributes: |
|
See also
scale
- Equivalent function without the estimator API.
sklearn.decomposition.PCA
- Further removes the linear correlation across features with ‘whiten=True’.
Notes
NaNs are treated as missing values: disregarded in fit, and maintained in transform.
For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.
Examples
>>> from sklearn.preprocessing import StandardScaler
>>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
>>> scaler = StandardScaler()
>>> print(scaler.fit(data))
StandardScaler(copy=True, with_mean=True, with_std=True)
>>> print(scaler.mean_)
[0.5 0.5]
>>> print(scaler.transform(data))
[[-1. -1.]
[-1. -1.]
[ 1. 1.]
[ 1. 1.]]
>>> print(scaler.transform([[2, 2]]))
[[3. 3.]]
Methods方法
fit (X[, y]) |
Compute the mean and std to be used for later scaling. 计算用于以后缩放的mean和std |
fit_transform (X[, y]) |
Fit to data, then transform it. 适合数据,然后转换它 |
get_params ([deep]) |
Get parameters for this estimator. |
inverse_transform (X[, copy]) |
Scale back the data to the original representation |
partial_fit (X[, y]) |
Online computation of mean and std on X for later scaling. |
set_params (**params) |
Set the parameters of this estimator. |
transform (X[, y, copy]) |
Perform standardization by centering and scaling 通过居中和缩放执行标准化 |
__init__
(copy=True, with_mean=True, with_std=True)[source]
fit
(X, y=None)[source]-
Compute the mean and std to be used for later scaling.
Parameters: - X : {array-like, sparse matrix}, shape [n_samples, n_features]
-
The data used to compute the mean and standard deviation used for later scaling along the features axis.
- y
-
Ignored
fit_transform
(X, y=None, **fit_params)[source]-
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
使用可选参数fit_params是变换器适合X和Y,并返回X的变换版本
Parameters: - X : numpy array of shape [n_samples, n_features]
-
Training set.
- y : numpy array of shape [n_samples]
-
Target values.
Returns: - X_new : numpy array of shape [n_samples, n_features_new]
-
Transformed array.
get_params
(deep=True)[source]-
Get parameters for this estimator.
Parameters: - deep : boolean, optional
-
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
-
Parameter names mapped to their values.
inverse_transform
(X, copy=None)[source]-
Scale back the data to the original representation
Parameters: - X : array-like, shape [n_samples, n_features]
-
The data used to scale along the features axis.
- copy : bool, optional (default: None)
-
Copy the input X or not.
Returns: - X_tr : array-like, shape [n_samples, n_features]
-
Transformed array.
partial_fit
(X, y=None)[source]-
Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when fit is not feasible due to very large number of n_samples or because X is read from a continuous stream.
The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. “Algorithms for computing the sample variance: Analysis and recommendations.” The American Statistician 37.3 (1983): 242-247:
Parameters: - X : {array-like, sparse matrix}, shape [n_samples, n_features]
-
The data used to compute the mean and standard deviation used for later scaling along the features axis.
- y
-
Ignored
set_params
(**params)[source]-
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self
transform
(X, y=’deprecated’, copy=None)[source]-
Perform standardization by centering and scaling
Parameters: - X : array-like, shape [n_samples, n_features]
-
The data used to scale along the features axis.
- y : (ignored)
-
Deprecated since version 0.19: This parameter will be removed in 0.21.
- copy : bool, optional (default: None)
-
Copy the input X or not.
标准化数据-StandardScaler的更多相关文章
- numpy数组-标准化数据
标准化数据的公式: (数据值 - 平均数) / 标准差 import numpy as np employment = np.array([ 55.70000076, 51.40000153, 50. ...
- sklearn 标准化数据的方法
Sklearn 标准化数据 from __future__ import print_function from sklearn import preprocessing import numpy a ...
- pytorch torchversion标准化数据
新旧标准差的关系
- 利用 pandas 进行数据的预处理——离散数据哑编码、连续数据标准化
数据的标准化 数据标准化就是将不同取值范围的数据,在保留各自数据相对大小顺序不变的情况下,整体映射到一个固定的区间中.根据具体的实现方法不同,有的时候会映射到 [ 0 ,1 ],有时映射到 0 附近的 ...
- TGCA数据的标准化以及差异分析--转载
转载果子学生信 https://mp.weixin.qq.com/s/Ph1O6V5RkxkyrKpVmB5ODA 前面我们从GDC下载了TCGA肿瘤数据库的数据,也能够把GDC下载的多个TCGA文 ...
- Matlab数据标准化——mapstd、mapminmax
Matlab神经网络工具箱中提供了两个自带的数据标准化处理的函数——mapstd和mapminmax,本文试图解析一下这两个函数的用法. 一.mapstd mapstd对应我们数学建模中常使用的Z-S ...
- Scikit-Learn模块学习笔记——数据预处理模块preprocessing
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...
- 使用sklearn进行数据挖掘-房价预测(4)—数据预处理
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...
- Scikit-learn数据变换
转载自:https://blog.csdn.net/Dream_angel_Z/article/details/49406573 本文主要是对照scikit-learn的preprocessing章节 ...
随机推荐
- SpringBoot 使用Sharding-JDBC进行分库分表及其分布式ID的生成
为解决关系型数据库面对海量数据由于数据量过大而导致的性能问题时,将数据进行分片是行之有效的解决方案,而将集中于单一节点的数据拆分并分别存储到多个数据库或表,称为分库分表. 分库可以有效分散高并发量,分 ...
- FJNU2018低程F jq解救fuls (贪心乱搞)题解
题目描述 一天fuls被邪恶的"咕咕咕"抓走了,jq为了救fuls可谓是赴汤蹈火,费了九牛二虎之力才找到了"咕咕咕"关押fuls的地方. fuls被关在一个机关 ...
- powershell的stable和preview版本
在看https://github.com/PowerShell/PowerShell/releases的时候发现,已经发布了6.2.0的preview版本的情况下,还会继续发布6.1.3. 在Read ...
- sql 之 INSERT IGNORE
INSERT IGNORE 与INSERT INTO的区别就是INSERT IGNORE会忽略数据库中已经存在 的数据,如果数据库没有数据,就插入新的数据,如果有数据的话就跳过这条数据.这样就可以保留 ...
- (zhuan) Speech and Natural Language Processing
Speech and Natural Language Processing obtain from this link: https://github.com/edobashira/speech-l ...
- JVM介绍
1. 什么是JVM? JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来 ...
- 为DataGridView增加鼠标滚轮功能
#region 鼠标滚动 [System.Runtime.InteropServices.DllImport("user32.dll", EntryPoint = "Wi ...
- uoj #228. 基础数据结构练习题 线段树
#228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...
- 字符串GZIP压缩解压
c# /// <summary> /// 字符串压缩解压 /// </summary> public class Zipper { public static string C ...
- XML简单入门
1.xml文件的第一句为<?xml version="1.0" ?> xml 1.0版本和1.1版本有较大不同,且1.1版本向下不可兼容,故使用version 1.0 ...