OpenCV版本: 3.2.0

例程文件目录/samples/cpp/lkdemo.cpp

原始程序是采集相机数据,台式机没有摄像头,用Euroc测试集,偷ORB_SLAM2 /Examples/Monocular/mono_euroc.cc里的LoadImages函数读取数据

在cpp目录下新建一个自己的目录mylk,拷贝lkdemo和example_cmake目录下的CMakeLists.txt并修改:

add_executable(lk_example lkdemo.cpp)
target_link_libraries(lk_example ${OpenCV_LIBS})

新建目录build,进入后cmake .. + make 编译运行即可。run.sh如下:

./lkdemo ~/slamData/EuRoC/mav02/cam0/data ~/ORB_SLAM2/Examples/Stereo/EuRoC_TimeStamps/MH02.txt

先提取角点,亚像素精度提炼角点,光流跟踪。

运行过程中会监控鼠标和键盘:

按下鼠标左键 -> 添加一个角点

按下r -> 初始化角点

按下c -> 清除角点

按下n -> 只显示角点(右图)

按下esc -> 退出

修改后的程序:

 #include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp" #include <iostream>
#include <ctype.h>
#include <fstream>
#include <algorithm>
using namespace std; using namespace cv;
void LoadImages(const string &strImagePath, const string &strPathTimes,
vector<string> &vstrImages, vector<double> &vTimeStamps)
{
ifstream fTimes;
fTimes.open(strPathTimes.c_str());
vTimeStamps.reserve();
vstrImages.reserve();
while(!fTimes.eof())
{
string s;
getline(fTimes,s);
if(!s.empty())
{
stringstream ss;
ss << s;
vstrImages.push_back(strImagePath + "/" + ss.str() + ".png");
double t;
ss >> t;
vTimeStamps.push_back(t/1e9); }
}
}
static void help()
{
// print a welcome message, and the OpenCV version
cout << "\nThis is a demo of Lukas-Kanade optical flow lkdemo(),\n"
"Using OpenCV version " << CV_VERSION << endl;
cout << "\nIt uses camera by default, but you can provide a path to video as an argument.\n";
cout << "\nHot keys: \n"
"\tESC - quit the program\n"
"\tr - auto-initialize tracking\n"
"\tc - delete all the points\n"
"\tn - switch the \"night\" mode on/off\n"
"To add/remove a feature point click it\n" << endl;
} Point2f point;
bool addRemovePt = false; static void onMouse( int event, int x, int y, int /*flags*/, void* /*param*/ )
{
if( event == EVENT_LBUTTONDOWN )
{
point = Point2f((float)x, (float)y);
addRemovePt = true;
}
} int main( int argc, char** argv )
{
VideoCapture cap;
TermCriteria termcrit(TermCriteria::COUNT|TermCriteria::EPS,,0.03);
Size subPixWinSize(,), winSize(,); const int MAX_COUNT = ;
bool needToInit = false;
bool nightMode = false; namedWindow( "LK Demo", );
setMouseCallback( "LK Demo", onMouse, ); Mat gray, prevGray, image, frame;
vector<Point2f> points[]; vector<string> vstrImageFilenames;
vector<double> vstrstamps;
LoadImages(string(argv[]), string(argv[]), vstrImageFilenames, vstrstamps);
for(int i=;i<vstrImageFilenames.size();i++)
{ image = imread(vstrImageFilenames[i],IMREAD_COLOR);
cvtColor(image, gray, COLOR_BGR2GRAY); if( nightMode )
image = Scalar::all(); if( needToInit )
{
// automatic initialization
goodFeaturesToTrack(gray, points[], MAX_COUNT, 0.01, , Mat(), , , 0.04);
cornerSubPix(gray, points[], subPixWinSize, Size(-,-), termcrit);
addRemovePt = false;
}
else if( !points[].empty() )
{
vector<uchar> status;
vector<float> err;
if(prevGray.empty())
gray.copyTo(prevGray);
calcOpticalFlowPyrLK(prevGray, gray, points[], points[], status, err, winSize,
, termcrit, , 0.001);
size_t i, k;
for( i = k = ; i < points[].size(); i++ )
{
if( addRemovePt )
{
if( norm(point - points[][i]) <= )
{
addRemovePt = false;
continue;
}
} if( !status[i] )
continue; points[][k++] = points[][i];
circle( image, points[][i], , Scalar(,,), -, );
}
points[].resize(k);
} if( addRemovePt && points[].size() < (size_t)MAX_COUNT )
{
vector<Point2f> tmp;
tmp.push_back(point);
cornerSubPix( gray, tmp, winSize, Size(-,-), termcrit);
points[].push_back(tmp[]);
addRemovePt = false;
} needToInit = false;
imshow("LK Demo", image); char c = (char)waitKey();
if( c == )
break;
switch( c )
{
case 'r':
needToInit = true;
break;
case 'c':
points[].clear();
points[].clear();
break;
case 'n':
nightMode = !nightMode;
break;
} std::swap(points[], points[]);
cv::swap(prevGray, gray);
} return ;
}

参考:goodFeaturesToTrack函数详细注释

OpenCV LK光流法测试的更多相关文章

  1. OpenCV Using Python——基于SURF特征提取和金字塔LK光流法的单目视觉三维重建 (光流、场景流)

    https://blog.csdn.net/shadow_guo/article/details/44312691 基于SURF特征提取和金字塔LK光流法的单目视觉三维重建 1. 单目视觉三维重建问题 ...

  2. OpenCV 使用光流法检测物体运动

    OpenCV 可以使用光流法检测物体运动,贴上代码以及效果. // opticalflow.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" ...

  3. LK 光流法简介

    前言 若假定一个局部区域的像素运动是一致的,则可以用这个新的约束条件替代前文中提到的全局速度平滑约束条件.这种光流算法就叫做 LK 光流法. LK 光流法的推导 首先,需要推导出光流约束方程. 这一步 ...

  4. 光流法详解之一(LK光流)

    Lucas–Kanade光流算法是一种两帧差分的光流估计算法.它由Bruce D. Lucas 和 Takeo Kanade提出 [1]. LK光流法有三个假设条件: 1. 亮度恒定:一个像素点随着时 ...

  5. 【Matlab】运动目标检测之“光流法”

    光流(optical flow) 1950年,Gibson首先提出了光流的概念,所谓光流就是指图像表现运动的速度.物体在运动的时候之所以能被人眼发现,就是因为当物体运动时,会在人的视网膜上形成一系列的 ...

  6. 【图像处理】openCV光流法追踪运动物体

    openCV光流法追踪运动物体 email:chentravelling@163.com 一.光流简单介绍 摘自:zouxy09 光流的概念是Gibson在1950年首先提出来的.它是空间运动物体在观 ...

  7. 目标跟踪之Lukas-Kanade光流法

    转载自:http://blog.csdn.net/u014568921/article/details/46638557 光流是图像亮度的运动信息描述.光流法计算最初是由Horn和Schunck于19 ...

  8. LK光流算法:提高计算精度和增加搜索范围

    LK光流算法:提高计算精度和增加搜索范围 关于LK算法的基本理论,见:http://www.cnblogs.com/dzyBK/p/4960630.html 这里主要阐述如何提高LK算法的计算精度和在 ...

  9. 目标跟踪之Lukas-Kanade光流法(转)

    光流是图像亮度的运动信息描述.光流法计算最初是由Horn和Schunck于1981年提出的,创造性地将二维速度场与灰度相联系,引入光流约束方程,得到光流计算的基本算法.光流计算基于物体移动的光学特性提 ...

随机推荐

  1. flex布局 响应式布局

    移动端页面开发流程   移动端页面布局 一.移动端app分类 1.Native App原生app手机应用程序 使用原生的语言开发的手机应用,Android系统用的是java,ios系统用的是objec ...

  2. java Arrays工具

    package cn.sasa.demo4; import java.util.Arrays; public class ArrayDemo { public static void main(Str ...

  3. 洛谷P3245 大数 [HNOI2016] 莫队

    正解:莫队 解题报告: 传送门 这题首先要发现一个结论,是这样儿的: 若p不是10的约数(即2和5) 时,当第i位到第n位组成的数%p==第j位到第n位组成的数%p,那么第i位到第j位上的数组成的数% ...

  4. 升级my.cnf注意

    升级my.cnf注意 mkdir -p /ngbs/data/{logs,tmp} vi  /etc/init.d/mysqlbasedir=/usr/local/mysql datadir=/ngb ...

  5. linux服务器性能查看

    1.1 cpu性能查看 1.查看物理cpu个数: cat /proc/cpuinfo |grep "physical id"|sort|uniq|wc -l 2.查看每个物理cpu ...

  6. 主成分分析(PCA)原理详解

    一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上 ...

  7. 解决ios10以上点击缩放的问题

    禁止ios10以上点击缩放,代码如下: <script> window.onload=function () { document.addEventListener('touchstart ...

  8. Elemet-技巧

    <el-table-column prop="> </el-table-column> 效果: append-to-body 解决el-dialog 弹窗遮罩为题 & ...

  9. 微信支付-微信公众号支付,微信H5支付,微信APP支付,微信扫码支付

    在支付前,如果使用第三方MVC框架,则使用重写模式,服务器也需要配置该项 if (!-e $request_filename){ rewrite ^/(.*)$ /index.php/$ last; ...

  10. (转)redis分布式锁-SETNX实现

    Redis有一系列的命令,特点是以NX结尾,NX是Not eXists的缩写,如SETNX命令就应该理解为:SET if Not eXists.这系列的命令非常有用,这里讲使用SETNX来实现分布式锁 ...