LOJ2542 随机游走 Min-Max容斥+树上期望DP
搞了一下午 真的是啥都不会
首先这道题要用到Min-Max容斥 得到的结论是
设 \(Max(S)\)表示集合里最晚被访问的节点被访问的期望步数
设 \(Min(S)\)表示集合里最早被访问的节点被访问的期望步数
那么$ Max(S) = ∑_{T \in S} {-1^ { \lvert T \rvert+1} }Min(T)$
(这个相关的证明和理解可以看看HDU4336 附一个题解)
考虑对于一个集合\(S\)如何计算\(Min(S)\)
记\(d_u\)为点\(u\)的度数
当\(u\notin S \space\space \Rightarrow \space \space\displaystyle f_u=f_{fa[u]}+1+\sum (f_{son[u]}+1)\times \frac{1}{d_u}\)
当\(u \in S\space\space \Rightarrow \space \space f(u)=0\)
对于树上的期望可以写成$f_u=k_u\times f_{fa[u]}+b_u \(的形式
于是\)\sum f_{son[u]}=\sum_{fa[v]=u}(a_v \times f_u+b_v)$
代入之前的式子并化简得
\(\displaystyle (1-\frac{\sum A_v}{d_u}) f(u) = \frac{1}{d_u}f_{\mathrm{fa}[u]}+(1+\frac{B_v}{d_u})\)
这个\(dfs\)一遍就可以维护所有点的\(a,b\)了
考虑如何回答询问
可以对于每个询问的集合\(S\)暴力枚举子集 这样是可以过得
但我们也可以像类似\(FMT\)的做法先维护出所有集合的子集之和再\(O(1)\)回答每个询问 这里注意每个集合初值的正负
#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 998244353
#define ll long long
#define mk make_pair
#define pb push_back
#define lb double
#define fi first
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=1e6+5;
const int M=25;
/*
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=(TT=but)+fread(but,1,1<<15,stdin),TT==mo))?-1:*TT++)//*/
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
struct Edge{
int v,nxt;
}e[N<<1];
int n,Q,rt,tot,head[M],bin[N],a[M],b[M],bit[N],d[M],f[N];
void add(int u,int v){
e[++tot].v=v,e[tot].nxt=head[u],head[u]=tot,++d[u];
e[++tot].v=u,e[tot].nxt=head[v],head[v]=tot,++d[v];
}
int poww(int x,int y){
int ans=1;
while(y){
if(y&1) ans=(ll)ans*x%mod;
y>>=1,x=(ll)x*x%mod;
}
return ans;
}
void dfs(int x,int fa,int S){
a[x]=b[x]=0;
if((1<<x)&S) return;
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].v;
if(j==fa) continue;
dfs(j,x,S);
(a[x]+=a[j])%=mod,(b[x]+=b[j])%=mod;
}
int tmp=poww((1+mod-(ll)a[x]*d[x]%mod)%mod,mod-2);
a[x]=(ll)tmp*d[x]%mod,b[x]=(ll)(1+(ll)b[x]*d[x]%mod)*tmp%mod;
// cout<<x<<" "<<a[x]<<" "<<b[x]<<endl;
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
#endif
n=read(),Q=read(),rt=read()-1;
for(int i=1;i<n;i++) add(read()-1,read()-1);
for(int i=0;i<n;i++) d[i]=poww(d[i],mod-2);
for(int i=1;i<(1<<n);i++) bin[i]=bin[i>>1]+(i&1);
for(int i=0;i<(1<<n);i++) dfs(rt,-1,i),f[i]=bin[i]&1?b[rt]:(mod-b[rt])%mod;
// for(int i=0;i<(1<<n);i++) cout<<i<<" "<<f[i]<<endl;
for(int j=0;j<n;j++) for(int i=0;i<(1<<n);i++) if(i&(1<<j)) (f[i]+=f[i^(1<<j)])%=mod;
while(Q--){
int S=0;
for(int T=read();T;T--) S|=(1<<(read()-1));
// bug(S);
printf("%d\n",f[S]);
}
}
LOJ2542 随机游走 Min-Max容斥+树上期望DP的更多相关文章
- 「PKUWC2018」随机游走(min-max容斥+FWT)
「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...
- 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)
[LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...
- 【洛谷5643】[PKUWC2018] 随机游走(Min-Max容斥+待定系数法+高维前缀和)
点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次 ...
- 洛谷 P5643 - [PKUWC2018]随机游走(Min-Max 容斥+FWT+树上高斯消元,hot tea)
题面传送门 一道挺综合的 hot tea,放到 PKUWC 的 D2T2 还挺喜闻乐见的( 首先我们考虑怎样对一个固定的集合 \(S\) 计算答案,注意到我们要求的是一个形如 \(E(\max(S)) ...
- LOJ #2542「PKUWC2018」随机游走
$ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...
- 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
- LOJ2542 PKUWC2018 随机游走 min-max容斥、树上高斯消元、高维前缀和、期望
传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x ...
- LOJ #2542 [PKUWC2018]随机游走 (概率期望、组合数学、子集和变换、Min-Max容斥)
很好很有趣很神仙的题! 题目链接: https://loj.ac/problem/2542 题意: 请自行阅读 题解首先我们显然要求的是几个随机变量的最大值的期望(不是期望的最大值),然后这玩意很难求 ...
- 【LOJ2542】「PKUWC2018」随机游走
题意 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...
随机推荐
- php测试mysql数据库连通性并且在浏览器每一秒输出一次结果
有时候网络环境不稳定,需要测试mysql数据库的连接是否畅通,我们可以通过php脚本实现,具体代码如下,在360浏览器测试通过: <?php /* 循环打印出mysql连接测试 */ heade ...
- 转载:编译安装Nginx(1.4)《深入理解Nginx》(陶辉)
原文:https://book.2cto.com/201304/19617.html 安装Nginx最简单的方式是,进入nginx-1.0.14目录后执行以下3行命令:./configuremakem ...
- 并发之atomicInteger与CAS机制
并发之atomic与CAS自旋锁 通过前几章的讲解我们知道i++这种类似操作是不安全的.针对这种情况,我们可能会想到利用synchronize关键字实现线程同步,保证++操作的原子性,的确这是一种有效 ...
- cf1020c 瞎搞
枚举获胜状态即可 #include<iostream> #include<cstdio> #include<cstring> #include<cmath&g ...
- poj2019 二维RMQ模板题
和hdu2888基本上一样的,也是求一个矩阵内的极值 #include<iostream> #include<cstring> #include<cstdio> # ...
- 《剑指offer》-递增数组中找到和为S的(最小)两个元素
题目描述 输入一个递增排序的数组和一个数字S,在数组中查找两个数,是的他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的. 输出描述: 对应每个测试案例,输出两个数,小的先输出. 首先 ...
- ERP简介(一)
ERP是针对物资资源管理(物流).人力资源管理(人流).财务资源管理(财流).信息资源管理(信息流)集成一体化的企业管理软件 一:系统模块简介:
- HDU 1851 (N个BASH博弈子游戏)
题意:n堆石子,分别有M1,M2,·······,Mn个石子,各堆分别最多取L1,L2,·····Ln个石头,两个人分别取,一次只能从一堆中取,取走最后一个石子的人获胜.后选的人获胜输出Yes,否则输 ...
- java快速排序引起的StackOverflowError异常
写在前面:这篇随笔主要记录一下递归调用引起的虚拟机栈溢出的情况以及通过参数配置了虚拟机栈大小来使递归调用可以顺利执行.并没有对涉及到的一些概念进行详细的解释(因为我自己目前对这些概念并不是特别清楚), ...
- AndroidStudio将html5打包成apk
我想将html5的动画效果打包成手机app,以方便传播.而在android开发的组件中就直接由webview可以访问网页,另外在android工程中,assets文件夹下的内容是不会在被编译的,因此可 ...