HDU.6155.Subsequence Count(线段树 矩阵)
题目链接
首先考虑询问[1,n]怎么做
设 f[i][0/1]表示[1,i]以0/1结尾的不同子序列个数
则 \(if(A[i]) f[i][1] = f[i-1][0] + f[i-1][1] + 1 , f[i][0] = f[i-1][0]\)
\(\ \ if(!A[i]) f[i][0] = f[i-1][0] + f[i-1][1] + 1 , f[i][1] = f[i-1][1]\)
很整齐,我们来写成矩阵的样子: \(f[i,0]\ f[i,1]\ 1=f[i-1,0]\ f[i-1,1]\ 1\ *\ M\)
算了不写了。。这儿写比较麻烦 不妨看这
最后可得 原序列为0/1的位置 分别为两个仅互换1,2行 1,2列的矩阵M[0/1]
[l,r]的dp值就是区间矩阵乘积的结果 \(ans = f[i,0]+f[i,1]( f[i,0]\ f[i,1]\ 1 = 0\ 0\ 1 * M[l,r])\)
/*
注: Modify时标记不要改两次--
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define gc() getchar()
const int N=1e5+5,mod=1e9+7;
const int M[2][3][3]={{1,0,0,1,1,0,1,0,1},{1,1,0,0,1,0,0,1,1}};//0 1
int n,m,A[N];
char s[N];
struct Matrix
{
int mat[3][3];
// Matrix() {memset(mat,0,sizeof mat);}
Matrix operator *(const Matrix &a)const
{
Matrix res;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
{
res.mat[i][j]=0;
for(int k=0; k<3; ++k)
res.mat[i][j] += 1LL*mat[i][k]*a.mat[k][j]%mod,
res.mat[i][j] >= mod ? res.mat[i][j]-=mod : 0;//还是喜欢紧凑些--
}
return res;
}
};
struct Seg_Tree
{
Matrix mat[N<<2];
bool tag[N<<2];
inline void PushUp(int rt)
{
mat[rt]=mat[rt<<1]*mat[rt<<1|1];
}
inline void Init(int rt,int opt)
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
mat[rt].mat[i][j]=M[opt][i][j];
// if(opt)
// mat[rt].mat[0][0]=mat[rt].mat[0][1]=mat[rt].mat[1][1]=mat[rt].mat[2][1]=mat[rt].mat[2][2]=1;
// else
// mat[rt].mat[0][0]=mat[rt].mat[1][0]=mat[rt].mat[1][1]=mat[rt].mat[2][0]=mat[rt].mat[2][2]=1;
}
void Swap(int rt)
{
// for(int i=0; i<3; ++i)//swap(Line 1,Line 2)
// std::swap(mat[rt].mat[0][i], mat[rt].mat[1][i]);
// for(int i=0; i<3; ++i)//swap(Column 1,Column 2)
// std::swap(mat[rt].mat[i][0], mat[rt].mat[i][1]);
std::swap(mat[rt].mat[0][0],mat[rt].mat[1][0]),
std::swap(mat[rt].mat[0][1],mat[rt].mat[1][1]),
std::swap(mat[rt].mat[0][2],mat[rt].mat[1][2]),
std::swap(mat[rt].mat[0][0],mat[rt].mat[0][1]),
std::swap(mat[rt].mat[1][0],mat[rt].mat[1][1]),
std::swap(mat[rt].mat[2][0],mat[rt].mat[2][1]),
tag[rt]^=1;
}
void PushDown(int rt)
{
Swap(rt<<1), Swap(rt<<1|1);
tag[rt]=0;
}
void Build(int l,int r,int rt)
{
tag[rt]=0;
if(l==r)
if(A[l]) Init(rt,1);
else Init(rt,0);
else
{
int m=l+r>>1;
Build(l,m,rt<<1), Build(m+1,r,rt<<1|1);
PushUp(rt);
}
}
void Modify_Flip(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) Swap(rt);//, tag[rt]^=1;//WA
else
{
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify_Flip(l,m,rt<<1,L,R);
if(m<R) Modify_Flip(m+1,r,rt<<1|1,L,R);
PushUp(rt);
}
}
Matrix Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return mat[rt];
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m)
if(m<R) return Query(l,m,rt<<1,L,R)*Query(m+1,r,rt<<1|1,L,R);
else return Query(l,m,rt<<1,L,R);
else return Query(m+1,r,rt<<1|1,L,R);
}
}t;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
int main()
{
#ifndef ONLINE_JUDGE
// freopen("1.in","r",stdin);
#endif
int T=read();
while(T--)
{
n=read(),m=read();
scanf("%s",s+1);
for(int i=1; i<=n; ++i) A[i]=s[i]-'0';
t.Build(1,n,1);
int opt,l,r; Matrix res;
while(m--)
{
opt=read(),l=read(),r=read();
if(opt==1) t.Modify_Flip(1,n,1,l,r);
else
res = t.Query(1,n,1,l,r),
printf("%d\n",(res.mat[2][0]+res.mat[2][1])%mod);
}
}
return 0;
}
HDU.6155.Subsequence Count(线段树 矩阵)的更多相关文章
- HDU 6155 Subsequence Count 线段树维护矩阵
Subsequence Count Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 256000/256000 K (Java/Oth ...
- [HDU6155]Subsequence Count(线段树+矩阵)
DP式很容易得到,发现是线性递推形式,于是可以矩阵加速.又由于是区间形式,所以用线段树维护. https://www.cnblogs.com/Miracevin/p/9124511.html 关键在于 ...
- HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)
题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...
- HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解
题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...
- HDU 6155 Subsequence Count (DP、线性代数、线段树)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6155 题解 DP+线代好题.(考场上过多时间刚前两题,没怎么想这题--) 首先列出一个DP式: 设\( ...
- 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...
- hdu 6155 - Subsequence Count
话说这题比赛时候过的好少,连题都没读TOT 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i ...
- hdu 5700区间交(线段树)
区间交 Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submiss ...
- Wannafly Winter Camp 2019.Day 8 div1 E.Souls-like Game(线段树 矩阵快速幂)
题目链接 \(998244353\)写成\(99824435\)然后调这个线段树模板1.5h= = 以后要注意常量啊啊啊 \(Description\) 每个位置有一个\(3\times3\)的矩阵, ...
随机推荐
- C语言中,float在内存中的储存方式
浮点型变量在计算机内存中占用4字节(Byte),即32-bit. 遵循IEEE-754格式标准. 一个浮点数由2部分组成:底数m 和 指数e. ±mantissa × 2exponent (注意,公式 ...
- shell无法捕获程序输出的问题
dir_name=`echo ~gtp` 获取的用户目录为/ dir_name=`echo ~gtp 2>&1` 这样就可以获取到了 参考网址:https://blog.csdn.net ...
- shell编程之helloworld
/bin/sh与/bin/bash的区别sh:如果前面有语句报错,则报错语句后面的命令不执行bash:如果前面有语句报错,后面的命令也会执行sh跟bash的区别,实际上就是bash有没有开启posix ...
- javascript NaN注意事项
NaN直译是Not a number NaN是个特殊的number,它和任何值相比都不相等,甚至和它自己. NaN === NaN 这个表达式是false 唯一能判断NaN的方法是 IsNaN(NaN ...
- Linux 文件查找命令详解
find命令 Linux find命令用来在指定目录下查找文件.任何位于参数之前的字符串都将被视为欲查找的目录名.如果使用该命令时,不设置任何参数,则find命令将在当前目录下查找子目录与文件.并且将 ...
- STM32应用实例十:简析STM32 I2C通讯死锁问题
I2C接口是一种使用非常普遍的MCU与外部设备的接口方式,在STM32中也集成了I2C接口,我们也常常使用它来与外围的传感器等设备通讯. 最近在我们使用STM32F1VET6读取压力和温湿度传感器数据 ...
- 淘淘商城 本地仓库配置和仓库jar包下载
SVN服务器的搭建请查看该文:<Win7 x64 svn 服务器搭建> 1:仓库包存放位置: 2:setting.xml 文件配置信息 <?xml version="1.0 ...
- python 全栈开发,Day125(HTML5+ 初识,HBuilder,夜神模拟器,Webview)
昨日内容回顾 1.增删改查: 增: db.collections.insert({a:1}) // 官方不推荐了 db.collections.insertMany([{a:1},{b:1}]) in ...
- 步步为营-23-通过GridView实现增删改
说明:把xml中的数据放入到数据源list中然后显示到gridview中,参考上一节内容 1 UI页面 2创建student类 public class Student { public int ID ...
- oracle表分区创建
一.什么是分区表表分区有以下优点: 1.数据查询:数据被存储到多个文件上,减少了I/O负载,查询速度提高. 2.数据修剪:保存历史数据非常的理想. 3.备份:将大表的数据分成多个文件,方便备份和恢复. ...