Deep Reinforcement Learning with Iterative Shift for Visual Tracking

2019-07-30 14:55:31

Paperhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Liangliang_Ren_Deep_Reinforcement_Learning_ECCV_2018_paper.pdf

Code: not find yet.

Paper List of Tracking with Deep Reinforcement Learninghttps://github.com/wangxiao5791509/Tracking-with-Deep-Reinforcement-Learning

1. Background and Motivation:

本文的贡献在于:

1). 提出一种 Actor-Critic Network 来预测物体运动的参数,并根据跟踪状态选择动作,不同的动作,会根据对结果的影响不同,设置不同的奖励;

2). 将 tracking 看做是迭代的平移问题,而不是 CNN Classification 问题,所以定位更加高效和准确;

3). 在 OTB 和 TC128 数据集上取得了较好的效果;

2. Approach:

本文所提出的方法包含三个模块:1). the actor network; 2). the prediction network;  3). the critic network.

2.1 Iterative Shift for Visual Tracking 

本文将 tracking 看做是迭代的平移问题。  给定当前帧和之前的跟踪结果,prediction network 会迭代的平移候选框,以定位住目标物体,与此同时,action network 会在跟踪状态上进行预测,判断是否进行模型的更新,预测网络,甚至是重启跟踪过程。

正式的来说,给定上一帧的跟踪结果 $l_{t-1} = {x_{t-1}, y_{t-1}, w_{t-1}, h_{t-1}}$ 以及 feature $f_{t-1}^*$,我们先根据该位置,得到当前帧的大致位置,抠出该 feature $f_t$,然后用预测网络进行预测:

其中,预测网络的输出为:

此外,跟踪状态也可能会影响最终的结果,即:需要适时的更新预测网络。为了联合的基于 target's motion status 以及 tracker's status 进行决策,我们利用 actor network 根据多项式分布来产生动作:

其中,$a_k \in A = \{ continuous, stop & update, stop & ignore, restart \}$。

对于动作 continuous 来说,即:不用更新模型,继续平移,而进行的 shift 是根据 prediction network 进行的。

对于动作 step & update 来说,即:停止平移,更新模型,即:

对于动作 stop & ignore 来说,停止平移,不更新模型,表示目标物体已经找到,然而,跟踪器无法确定是否需要进行更新。

对于动作 restart 来说,重新进行跟踪过程,即:restart the iteration by re-sampling a random set of candidate patches $L_t$ around $l_{t-1}^*$ in $I_t$ and select the patch which has the highest Q-values.

DRL-IS with Actor-Critic:

我们探索 AC算法,来进行联合的训练三个网络。首先作者根据跟踪的性能,进行了奖励的设定:

对于 continue 动作, 根据

对于 stop & update and stop & ignore 动作,奖励的设定是根据 final prediction 和 ground truth 之间的 IoU 进行评判的:

对于 restart 动作,当 final prediction 和 groundtruth 之间的 IoU 低于 0.4 时,给予 pos 的奖励:

然后,我们计算每一个动作的 Q-value。

对于 action continue 的 Q-value 来说:

对于其他的三个动作来说,是按照如下的式子进行计算:

最终,两个函数的优化是按照如下的式子进行的:

其中,s' 是下一个状态,a' 是选择的最优动作,Action-value 以及 Value function 是按照如下的方式进行计算的:

总体的算法过程如下所示:

==

Deep Reinforcement Learning with Iterative Shift for Visual Tracking的更多相关文章

  1. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  4. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  5. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  6. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  7. 18 Issues in Current Deep Reinforcement Learning from ZhiHu

    深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...

  8. Paper Reading 1 - Playing Atari with Deep Reinforcement Learning

    来源:NIPS 2013 作者:DeepMind 理解基础: 增强学习基本知识 深度学习 特别是卷积神经网络的基本知识 创新点:第一个将深度学习模型与增强学习结合在一起从而成功地直接从高维的输入学习控 ...

  9. repost: Deep Reinforcement Learning

    From: http://wanghaitao8118.blog.163.com/blog/static/13986977220153811210319/ accessed 2016-03-10 深度 ...

随机推荐

  1. SVN 报错 Can't install '*' from pristine store, because no checksum is recorded for this file

    SVN同步.cleanup都会出现下面的提示: svn: E155017: Can't install '*' from pristine store, because no checksum is ...

  2. CAS 的问题

    cas这么好用,那么有没有什么问题呢?还真有 ABA问题 CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时 ...

  3. Centos7搭建DockerRegistry

    1. 说明 以下使用系统centos7,64位,镜像为CentOS-7-x86_64-Minimal-1804,均已root用户进行操作 2. 安装Registry Docker Registry 是 ...

  4. sphinx中文版Coreseek中文检索引擎安装和使用方法(Linux)

    sphinx中文版Coreseek中文检索引擎安装和使用方法(Linux)     众所周知,在MYSQL数据库中,如果你在百万级别数据库中使用 like 的话那你一定在那骂娘,coreseek是一个 ...

  5. Gtest:死亡测试

    转自:玩转Google开源C++单元测试框架Google Test系列(gtest)之五 - 死亡测试 一.前言 “死亡测试”名字比较恐怖,这里的“死亡”指的的是程序的崩溃.通常在测试过程中,我们需要 ...

  6. Linux命令——chgrp、chown、chmod

    简介 这三个命令都用于更改文件permission(权限).即下图红框位置 除此之外还有个“连结”,那个指的是硬链接,不是软连接.FS使用inode区分不同文件,而目录树使用文件名区分不同文件,因此可 ...

  7. Python的csv文件(csv模块)和ini文件(configparser模块)处理

    Python的csv文本文件(csv模块)和ini文本文件(configparser模块)处理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.csv文件 1>.CSV文件 ...

  8. MongoDB 分片问题汇总

    分片是MongoDB的扩展方式,通过分片能够增加更多的机器来用对不断增加的负载和数据,还不影响应用. 1.分片简介 分片是指将数据拆分,将其分散存在不同机器上的过程.有时也叫分区.将数据分散在不同的机 ...

  9. 用python+openpyxl从表格中读取测试用例的多条数据,然后将执行结果写入表格中

    # -*- coding: utf-8 -*- from selenium import webdriver from openpyxl import load_workbook class mylo ...

  10. C# 上传大文件

    上传大文件首先要修改web.config文件,否则上传报错.在web.config添加如下配置maxRequestLength表示能上传的最大文件值,单位是KB,requestLengthDiskTh ...