题意

默认\(n\leqslant m\)

所求即为:\(\prod\limits_{i=1}^n\prod\limits_{j=1}^mf[\gcd(i,j)]\)

枚举\(\gcd(i,j)\)变为:

\(\prod\limits_{k=1}^{n}f(k)^{\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=k]}\)

上面那个是莫比乌斯反演套路形式:

\(\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=k]\)

\(\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{m}{k}}[\gcd(i,j)=1]\)

\(\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{m}{k}}\sum\limits_{x|\gcd(i,j)}\mu(x)\)

\(\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\sum\limits_{i=1}^{\frac{n}{k}}\sum\limits_{j=1}^{\frac{m}{k}}[x|\gcd(i,j)]\)

\(\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\sum\limits_{i=1}^{\frac{n}{k*x}}\sum\limits_{j=1}^{\frac{m}{k*x}}1\)

\(\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\frac{n}{k*x}\frac{m}{k*x}\)

代回原式:

\(\prod\limits_{k=1}^{n}f(k)^{\sum\limits_{x=1}^{\frac{n}{k}}\mu(x)\frac{n}{k*x}\frac{m}{k*x}}\)

设\(T=k*x\),转而枚举\(T\):

\(\prod\limits_{T=1}^{n}\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})\frac{n}{T}\frac{m}{T}}\)

\(\prod\limits_{T=1}^{n}(\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})})^{\frac{n}{T}\frac{m}{T}}\)

显然指数部分可以除法分块,考虑如何求\(\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})}\):

设\(g(T)=\prod\limits_{d|T}f(d)^{\mu(\frac{T}{d})}\)

在算到\(f(d)\)时乘到\(g(T)\)即可。

答案即为:

\(\prod\limits_{T=1}^{n}g(T)^{\frac{n}{T}\frac{m}{T}}\)

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+10;
const ll mod=1e9+7;
int T,n,m;
ll ans=1;
ll f[maxn],g[maxn],mu[maxn],invf[maxn];
bool vis[maxn];
vector<int>prime;
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline void pre_work(int n)
{
g[0]=g[1]=1;
vis[1]=1;mu[1]=1;
for(int i=2;i<=n;i++)
{
g[i]=1;
if(!vis[i])prime.push_back(i),mu[i]=-1;
for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
}
f[0]=0,f[1]=1;invf[1]=1;
for(int i=2;i<=n;i++)f[i]=(f[i-1]+f[i-2])%mod,invf[i]=power(f[i],mod-2,mod);
for(int i=1;i<=n;i++)
{
if(!mu[i])continue;
for(int j=i;j<=n;j+=i)
g[j]=g[j]*(mu[i]==1?f[j/i]:invf[j/i])%mod;
}
for(int i=2;i<=n;i++)g[i]=g[i]*g[i-1]%mod;
}
int main()
{
pre_work(1000000);
scanf("%d",&T);
while(T--)
{
ans=1;
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
for(int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans=ans*power(g[r]*power(g[l-1],mod-2,mod)%mod,1ll*(n/l)*(m/l)%(mod-1),mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
return 0;
}

luoguP3704 [SDOI2017]数字表格的更多相关文章

  1. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  2. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Do ...

  4. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  5. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  6. 题解-[SDOI2017]数字表格

    题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...

  7. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  8. bzoj4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  9. [SDOI2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

随机推荐

  1. [NewLife.XCode]导入导出(实体对象百变魔君)

    NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netcore,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示例代码和 ...

  2. win10 x64 VS2017 PJSIP 视频通话编译流程

    win10 x64 VS2017 PJSIP 视频通话编译流程 1. 下载PJSIP源码 PJSIP源码下载地址:https://www.pjsip.org/ 2. 阅读一遍官方的文档 文档地址:ht ...

  3. (二十七)golang-排序和查找

    排序:将一组数据,依据指定的顺序进行排列 (1)内部排序:将数据加载在内存中进行排序: 交换排序(冒泡排序,快速排序)冒泡排序实现: 快速排序实现 (2)外部排序:数据量过大,无法全部加载到内存中,需 ...

  4. 海边拾贝-F-第三方项目

    第三方网站,不定期更新: 陈浩个人博客: https://coolshell.cn/ 阮一峰个人博客:http://www.ruanyifeng.com/blog/2015/02/make.html ...

  5. 快速缓存刷新CDN节点的方法

    缓存刷新方式有 URL 刷新.目录刷新和 URL 预热.URL 刷新是以文件为单位进行缓存刷新.目录刷新是以目录为单位,将目录下的所有文件进行缓存刷新.URL 预热是以文件为单位进行资源预热. 刷新后 ...

  6. SpringDataSolr入门

    1 Spring Data Solr简介 虽然支持任何编程语言的能力具有很大的市场价值,你可能感兴趣的问题是:我如何将Solr的应用集成到Spring中?可以,Spring Data Solr就是为了 ...

  7. WPF 3D相机基本坐标简介

    基本概念 WPF中3D空间基本坐标系是右手坐标系. WPF中3D空间的原点是(0,0,0) Position: 这个参数用来表示相机在空间内的坐标.参数是(X,Y,Z).当修改相机的这个参数时,这个坐 ...

  8. WPF 动态资源 DataContext="{DynamicResource studentListKey}" DisplayMemberPath="Name"

    public class StudentList:ObservableCollection<Student> { public List<Student> studentLis ...

  9. php CI如何实现全站静态生成html,动态创建目录

    php CI如何实现全站静态生成html,动态创建目录CodeIgniter框架生成HTML的方法 public function out_html($code) { $data['articles' ...

  10. jQuery-对列表的操作

    主要是通过对dom元素的增加和删除实现对数据增加和删除 <!DOCTYPE html> <html lang="en"> <head> < ...