关于Tfrecord
写入Tfrecord
print("convert data into tfrecord:train\n")
out_file_train = "/home/huadong.wang/bo.yan/fudan_mtl/data/ace2005/bn_nw.train.tfrecord"
writer = tf.python_io.TFRecordWriter(out_file_train)
for i in tqdm(range(len(data_train))):
record = tf.train.Example(features=tf.train.Features(feature={
'word_ids': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_x[i].tostring()])),
'et_ids1': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_et1[i].tostring()])),
'et_ids2': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_et2[i].tostring()])),
'position_ids1': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_p1[i].tostring()])),
'position_ids2': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_p1[i].tostring()])),
'chunks': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_chunks[i].tostring()])),
'spath_ids': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_spath[i].tostring()])),
'seq_len': tf.train.Feature(int64_list=tf.train.Int64List(value=[train_x_len[i]])),
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[np.argmax(train_relation[i])])),
'task': tf.train.Feature(int64_list=tf.train.Int64List(value=[np.int64(0)]))
}))
writer.write(record.SerializeToString())
writer.close()
解析tfrecord
def _parse_tfexample(serialized_example):
'''parse serialized tf.train.SequenceExample to tensors
context features : label, task
sequence features: sentence
'''
context_features={'label' : tf.FixedLenFeature([], tf.int64),
'task' : tf.FixedLenFeature([], tf.int64),
'seq_len': tf.FixedLenFeature([], tf.int64)}
sequence_features={'word_ids': tf.FixedLenSequenceFeature([], tf.int64),
'et_ids1': tf.FixedLenSequenceFeature([], tf.int64),
'et_ids2': tf.FixedLenSequenceFeature([], tf.int64),
'position_ids1': tf.FixedLenSequenceFeature([], tf.int64),
'position_ids2': tf.FixedLenSequenceFeature([], tf.int64),
'chunks': tf.FixedLenSequenceFeature([], tf.int64),
'spath_ids': tf.FixedLenSequenceFeature([], tf.int64),
}
context_dict, sequence_dict = tf.parse_single_sequence_example(
serialized_example,
context_features = context_features,
sequence_features = sequence_features) sentence = (sequence_dict['word_ids'],sequence_dict['et_ids1'],sequence_dict['et_ids2'],sequence_dict['position_ids1'],
sequence_dict['position_ids2'],sequence_dict['chunks'],sequence_dict['spath_ids'], context_dict['seq_len']) label = context_dict['label']
task = context_dict['task'] return task, label, sentence def read_tfrecord(epoch, batch_size):
for dataset in DATASETS:
train_record_file = os.path.join(OUT_DIR, dataset+'.train.tfrecord')
test_record_file = os.path.join(OUT_DIR, dataset+'.test.tfrecord') train_data = util.read_tfrecord(train_record_file,
epoch,
batch_size,
_parse_tfexample,
shuffle=True) test_data = util.read_tfrecord(test_record_file,
epoch,
batch_size,
_parse_tfexample,
shuffle=False)
yield train_data, test_data
模型中使用:
def build_task_graph(self, data):
task_label, labels, sentence = data
# sentence = tf.nn.embedding_lookup(self.word_embed, sentence)
##########################
word_ids, et_ids1,et_ids2,position_ids1,position_ids2,chunks,spath_ids,seq_len = sentence
# sentence = word_ids
######################### self.word_ids = word_ids
self.position_ids1 = position_ids1
self.position_ids2 = position_ids2
self.et_ids1 = et_ids1
self.et_ids2 = et_ids2
self.chunks_ids = chunks
self.spath_ids = spath_ids
self.seq_len = seq_len sentence = self.add_embedding_layers()
关于Tfrecord的更多相关文章
- Tensorflow 处理libsvm格式数据生成TFRecord (parse libsvm data to TFRecord)
#写libsvm格式 数据 write libsvm #!/usr/bin/env python #coding=gbk # ================================= ...
- 学习笔记TF016:CNN实现、数据集、TFRecord、加载图像、模型、训练、调试
AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类.层自左向右.自上向下读取,关联层分为一组,高度.宽度减小,深度增加.深度增加减少网络计算量. 训练模型数据集 ...
- [TFRecord格式数据]利用TFRecords存储与读取带标签的图片
利用TFRecords存储与读取带标签的图片 原创文章,转载请注明出处~ 觉得有用的话,欢迎一起讨论相互学习~Follow Me TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是 ...
- 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读
1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...
- 深度学习原理与框架-Tfrecord数据集的制作 1.tf.train.Examples(数据转换为二进制) 3.tf.image.encode_jpeg(解码图片加码成jpeg) 4.tf.train.Coordinator(构建多线程通道) 5.threading.Thread(建立单线程) 6.tf.python_io.TFR(TFR读入器)
1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Featur ...
- 3. Tensorflow生成TFRecord
1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...
- TFRecord文件的读写
前言在跑通了官网的mnist和cifar10数据之后,笔者尝试着制作自己的数据集,并保存,读入,显示. TensorFlow可以支持cifar10的数据格式, 也提供了标准的TFRecord 格式,而 ...
- 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...
- tfrecord
制作自己的TFRecord数据集,读取,显示及代码详解 http://blog.csdn.net/miaomiaoyuan/article/details/56865361
- 3 TFRecord样例程序实战
将图片数据写入Record文件 # 定义函数转化变量类型. def _int64_feature(value): return tf.train.Feature(int64_list=tf.train ...
随机推荐
- Android Studio 之 GridView
1. 数据源 ArrayList Cursor 2. 适配器 Adapter ArrayAdapter SmipleAdapter SmipleCursorAdapter BaseAdapter
- 第八节:Asp.Net Core整合Log4net(官方的、微软的两种)
一. 整合Log4net 1. 简单说明 对于log4net 官方的程序集而言,从2.0.7开始就支持.Net Core了,这里我们采用的是2.0.8,虽然好久没更新了,但不影响使用.Core版本与普 ...
- Luogu5611 Ynoi2013 D2T2/牛客挑战赛32F 最大子段和 分块、分治
传送门 之前一直咕着的,因为一些特殊的原因把这道题更掉算了-- 有一个对值域莫队+线段树的做法,复杂度\(O(n\sqrt{n} \log n)\)然而牛客机子实在太慢了没有希望(Luogu上精细实现 ...
- 集成开发环境(IDE)
学习目标: 1.了解Java的IDE开发工具 2.会使用Eclipse.IDEA开发工具新建项目,编写代码,并运行程序. 学习过程: 使用文本开发效率无疑是很低的,每次编写完代码后,还需要手动的编译执 ...
- SQL Server优化之SET STATISTICS开关(转载)
一.准备工作 缓存对于某个查询的性能影响十分之大,所以优化之前要清空缓存. 清除Buffer Pool里面的所有缓存 DBCC DROPCLEANBUFFERS 清除Buffer Pool里的所有缓存 ...
- 阿里云服务器连接ftp服务(软件的使用)
首先你需要有一个阿里云的ECS服务器 开通了宽带之后,ECS服务器就可以上网了 可以在本地电脑cmd控制台运行mstsc.exe启动远程桌面连接 windows+R 计算机名输入ECS服务器的公网ip ...
- Django TypeError: render() got an unexpected keyword argument 'renderer'
场景: Xadmin添加plugin 来源: 1. xadmin与DjangoUeditor的安装 (第3.3章节) 2. 增加富文本编辑器Ueditor (第14.7章节) 报错: Django T ...
- 关于注解sql和动态sql的写法
注解写sql一般写在mapper层,如果sql语句复杂建议不要写注解sql 拼接容易出错 二动态sql的话要在 main 下面创建一个resource ——mapper—— Mapper.xml 再在 ...
- MVC伪静态路由简单搭配
public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute ...
- 理解 Kubernetes 的亲和性调度
这次给大家介绍下k8s的亲和性调度:nodeSelector.nodeAffinity.podAffinity.Taints以及Tolerations用法. 一般情况下我们部署的 POD 是通过集群自 ...