写入Tfrecord

        print("convert data into tfrecord:train\n")
out_file_train = "/home/huadong.wang/bo.yan/fudan_mtl/data/ace2005/bn_nw.train.tfrecord"
writer = tf.python_io.TFRecordWriter(out_file_train) for i in tqdm(range(len(data_train))):
record = tf.train.Example(features=tf.train.Features(feature={
'word_ids': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_x[i].tostring()])),
'et_ids1': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_et1[i].tostring()])),
'et_ids2': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_et2[i].tostring()])),
'position_ids1': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_p1[i].tostring()])),
'position_ids2': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_p1[i].tostring()])),
'chunks': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_chunks[i].tostring()])),
'spath_ids': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_spath[i].tostring()])),
'seq_len': tf.train.Feature(int64_list=tf.train.Int64List(value=[train_x_len[i]])),
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[np.argmax(train_relation[i])])),
'task': tf.train.Feature(int64_list=tf.train.Int64List(value=[np.int64(0)]))
}))
writer.write(record.SerializeToString())
writer.close()

  

解析tfrecord

def _parse_tfexample(serialized_example):
'''parse serialized tf.train.SequenceExample to tensors
context features : label, task
sequence features: sentence
'''
context_features={'label' : tf.FixedLenFeature([], tf.int64),
'task' : tf.FixedLenFeature([], tf.int64),
'seq_len': tf.FixedLenFeature([], tf.int64)}
sequence_features={'word_ids': tf.FixedLenSequenceFeature([], tf.int64),
'et_ids1': tf.FixedLenSequenceFeature([], tf.int64),
'et_ids2': tf.FixedLenSequenceFeature([], tf.int64),
'position_ids1': tf.FixedLenSequenceFeature([], tf.int64),
'position_ids2': tf.FixedLenSequenceFeature([], tf.int64),
'chunks': tf.FixedLenSequenceFeature([], tf.int64),
'spath_ids': tf.FixedLenSequenceFeature([], tf.int64),
}
context_dict, sequence_dict = tf.parse_single_sequence_example(
serialized_example,
context_features = context_features,
sequence_features = sequence_features) sentence = (sequence_dict['word_ids'],sequence_dict['et_ids1'],sequence_dict['et_ids2'],sequence_dict['position_ids1'],
sequence_dict['position_ids2'],sequence_dict['chunks'],sequence_dict['spath_ids'], context_dict['seq_len']) label = context_dict['label']
task = context_dict['task'] return task, label, sentence def read_tfrecord(epoch, batch_size):
for dataset in DATASETS:
train_record_file = os.path.join(OUT_DIR, dataset+'.train.tfrecord')
test_record_file = os.path.join(OUT_DIR, dataset+'.test.tfrecord') train_data = util.read_tfrecord(train_record_file,
epoch,
batch_size,
_parse_tfexample,
shuffle=True) test_data = util.read_tfrecord(test_record_file,
epoch,
batch_size,
_parse_tfexample,
shuffle=False)
yield train_data, test_data

模型中使用:

  def build_task_graph(self, data):
task_label, labels, sentence = data
# sentence = tf.nn.embedding_lookup(self.word_embed, sentence)
##########################
word_ids, et_ids1,et_ids2,position_ids1,position_ids2,chunks,spath_ids,seq_len = sentence
# sentence = word_ids
######################### self.word_ids = word_ids
self.position_ids1 = position_ids1
self.position_ids2 = position_ids2
self.et_ids1 = et_ids1
self.et_ids2 = et_ids2
self.chunks_ids = chunks
self.spath_ids = spath_ids
self.seq_len = seq_len sentence = self.add_embedding_layers()

  

 

关于Tfrecord的更多相关文章

  1. Tensorflow 处理libsvm格式数据生成TFRecord (parse libsvm data to TFRecord)

    #写libsvm格式 数据 write libsvm     #!/usr/bin/env python #coding=gbk # ================================= ...

  2. 学习笔记TF016:CNN实现、数据集、TFRecord、加载图像、模型、训练、调试

    AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类.层自左向右.自上向下读取,关联层分为一组,高度.宽度减小,深度增加.深度增加减少网络计算量. 训练模型数据集 ...

  3. [TFRecord格式数据]利用TFRecords存储与读取带标签的图片

    利用TFRecords存储与读取带标签的图片 原创文章,转载请注明出处~ 觉得有用的话,欢迎一起讨论相互学习~Follow Me TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是 ...

  4. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  5. 深度学习原理与框架-Tfrecord数据集的制作 1.tf.train.Examples(数据转换为二进制) 3.tf.image.encode_jpeg(解码图片加码成jpeg) 4.tf.train.Coordinator(构建多线程通道) 5.threading.Thread(建立单线程) 6.tf.python_io.TFR(TFR读入器)

    1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Featur ...

  6. 3. Tensorflow生成TFRecord

    1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...

  7. TFRecord文件的读写

    前言在跑通了官网的mnist和cifar10数据之后,笔者尝试着制作自己的数据集,并保存,读入,显示. TensorFlow可以支持cifar10的数据格式, 也提供了标准的TFRecord 格式,而 ...

  8. 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练

    将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...

  9. tfrecord

    制作自己的TFRecord数据集,读取,显示及代码详解 http://blog.csdn.net/miaomiaoyuan/article/details/56865361

  10. 3 TFRecord样例程序实战

    将图片数据写入Record文件 # 定义函数转化变量类型. def _int64_feature(value): return tf.train.Feature(int64_list=tf.train ...

随机推荐

  1. npm install命令遇到relocation error: npm: symbol SSL_set_cert_cb的报错问题

    在安装elasticsearch-head的过程中npm install遇到如下报错 [root@localhost elasticsearch-head]# npm install npm: rel ...

  2. vue 实现模块上移下移 实现排序

    效果图 上移 下移 首先想到的是 数组的相互替换嘛 <template> <div> <div class="box" v-for="(it ...

  3. mac下编程使用字体

    1.xcode下使用的是Menlo的18号字体 2.webStorm使用的也是Menlo的18号字体 3.sublime Text 使用的也是Menlo的21号字体

  4. JAVA锁的膨胀过程和优化(阿里)

    阿里的人问什么是锁膨胀,答不上来,回来做了总结: 关于锁的膨胀,synchronized的原理参考:深入分析Synchronized原理(阿里面试题) 首先说一下锁的优化策略. 1,自旋锁 自旋锁其实 ...

  5. Linux+Nginx+Supervisor部署ASP.NET Core实操手册

    一.课程介绍 在上一节课程<ASP.NET Core托管和部署Linux实操演练手册>中我们学过net core的部署方式多样性和灵活性.我们通过远程工具输入dotnet 程序集名称.dl ...

  6. asp.net调用c++的dll

    只需要把dll文件拷贝到windows的system32目录下(64位系统为SysWOW64目录),如果操作系统为64位而dll为32位,还需在进程池启用32位支持.

  7. javascript中的each遍历

    each的用法  1.数组中的each 复制代码 var arr = [ "one", "two", "three", "four ...

  8. gcd 题解

    gcd Little White learned the greatest common divisor, so she plan to solve a problem: given \(x, n,\ ...

  9. JMeter工具学习(一)工具使用详细介绍

    备注: JMeter版本4.0 JDK版本1.8 1,JMeter下载 2,下载后直接解压 3,打开解压文件,找到bin目录下的jmeter.bat,双击打开 4,打开jmeter 6,右键Test ...

  10. linux下安装谷歌拼音输入法

    linux下安装谷歌拼音输入法 输入以下命令,等待安装完成. sudo apt-get install fcitx 接着输入,完成安装谷歌中文输入法 sudo apt-get install fcit ...