线性回归-API
- 线性回归的定义
- 利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式
- 线性关系
- 非线性关系
线性回归的分类
- 损失函数
- 最小二乘法
- 正规方程
- 梯度下降法
- 利用矩阵的逆,转置进行一步求解
- 只是适合样本和特征比较少的情况
- 梯度下降法 — 循序渐进
- 梯度的概念
- 单变量 -- 切线
- 多变量 -- 向量
- 梯度下降法中关注的两个参数
- α -- 就是步长
- 步长太小 -- 下山太慢
- 步长太大 -- 容易跳过极小值点(*)
- 为什么梯度要加一个负号
- 梯度方向是上升最快方向,负号就是下降最快方向
- α -- 就是步长
- 梯度的概念
- 梯度下降法和正规方程选择依据
- 小规模数据:
- 正规方程:LinearRegression(不能解决拟合问题)
- 岭回归
- 大规模数据:
- 梯度下降法:SGDRegressor
- 小规模数据:
线性回归优化方法
正规方程 -- 一蹴而就
- sklearn.linear_model.LinearRegression(fit_intercept=True)
- 通过正规方程优化
- 参数
- fit_intercept:是否计算偏置
- 属性
- LinearRegression.coef_:回归系数
- LinearRegression.intercept_:偏置
- sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)
- SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
- 参数:
- loss:损失类型
- loss=”squared_loss”: 普通最小二乘法
- fit_intercept:是否计算偏置
- learning_rate : string, optional
- 学习率填充
- 'constant': eta = eta0
- 'optimal': eta = 1.0 / (alpha * (t + t0)) [default]
- 'invscaling': eta = eta0 / pow(t, power_t)
- power_t=0.25:存在父类当中
- 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
- loss:损失类型
- 属性:
- SGDRegressor.coef_:回归系数
- SGDRegressor.intercept_:偏置
线性回归-API的更多相关文章
- Spark(十一) -- Mllib API编程 线性回归、KMeans、协同过滤演示
本文测试的Spark版本是1.3.1 在使用Spark的机器学习算法库之前,需要先了解Mllib中几个基础的概念和专门用于机器学习的数据类型 特征向量Vector: Vector的概念是和数学中的向量 ...
- 机器学习笔记5-Tensorflow高级API之tf.estimator
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...
- 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...
- Python----多元线性回归
多元线性回归 1.多元线性回归方程和简单线性回归方程类似,不同的是由于因变量个数的增加,求取参数的个数也相应增加,推导和求取过程也不一样.. y=β0+β1x1+β2x2+ ... +βpxp+ε 对 ...
- 【学习笔记】tensorflow实现一个简单的线性回归
目录 准备知识 Tensorflow运算API 梯度下降API 简单的线性回归的实现 建立事件文件 变量作用域 增加变量显示 模型的保存与加载 自定义命令行参数 准备知识 Tensorflow运算AP ...
- spark-MLlib之线性回归
>>提君博客原创 http://www.cnblogs.com/tijun/ << 假定线性拟合方程: 提君博客原创 变量 Xi 是 i 个变量或者说属性 参数 ai 是 ...
- pandas进行条件格式化以及线性回归的预测
条件格式化 需求1: 将三次考试的成绩小于60分的值找出来,并将字体变为红色 需求2: 将每次考试的第一名找出来,将背景变为绿色 需求3: 使用背景颜色的深浅来表示数值的大小 需求4: 使用数据条的长 ...
- AI学习---基于TensorFlow的案例[实现线性回归的训练]
线性回归原理复习 1)构建模型 |_> y = w1x1 + w2x2 + -- + wnxn + b 2)构造损失函数 | ...
- 用 scikit-learn 和 pandas 学习线性回归
用 scikit-learn 和 pandas 学习线性回归¶ from https://www.cnblogs.com/pinard/p/6016029.html 就算是简单的算法,也需要跑通整 ...
随机推荐
- osg geometry清空vertex
_vertices->clear(); _vertices->dirty(); _drawArrays->set(sog::PrimitiveSet::POINTS,0,0); _g ...
- Java 动态代理与AOP
动态代理与AOP 代理模式 代理模式给某一个目标对象(target)提供代理对象(proxy),并由代理对象控制对target对象的引用. 模式图: 代理模式中的角色有: 抽象对象角色(Abstrac ...
- Gulp 搭建前端非SPA 项目, 修改文件浏览器自动刷新
起因:需要搭建一个自动打包处理 sass / js (es6),自动监听文件变化时浏览器自动刷新的开发环境 项目目录 project build -css -js *.html src -html - ...
- nexus 3.x最新版下载安装和上传下载jar
注意: nexus 3.x最新版好像不用下载索引了,目前我使用一些基本功能没有索引也能耍的很6 下载 nexus最新版下载https://www.sonatype.com/download-oss-s ...
- Mac home目录下,创建文件夹,修改权限
http://php-note.com/article/detail/35e782e145a94042923946cb142b5cd1 1.关闭 SIP 2.sudo mount -uw /
- linux添加虚拟内存交换内存,以及设置优先使用交换内存
场景:在网上买了台低配置服务器,1c1g,内存太小了,于是打起了交换内存的注意.上网一查,居然还真可以.以下是具体步骤 首先新建一个交换分区文件夹 dd if=/dev/zero of=/usr/sw ...
- React 简介
- linux中C语言的运行(gcc)
执行sudo apt-get install build-essential 出现
- ACM算法锦集
一:知识点 数据结构: 1,单,双链表及循环链表 2,树的表示与存储,二叉树(概念,遍历)二叉树的 应用(二叉排序树,判定树,博弈树,解答树等) 3,文件操作(从文本文件中读入数据并输出到文本文 件中 ...
- 解决 niceScroll 自适应DOM 高度变化
利用dataTable展示数据列表时,当选择每页显示数量时,滚动条还是按照页面初始化时显示的,导致无法滚动查看下面的数据, 在stackoverflower 找到一个可用的方法,但不知道为什么仅写 ...