GWAS 全基因组关联分析 | summary statistic 概括统计 | meta-analysis 综合分析
有很多概念需要明确区分:
人有23对染色体,其中22对常染色体autosome,另外一对为性染色体sex chromosome,XX为女,XY为男。
染色体区带命名:在标示一特定的带时需要包括4项:①染色体号;②臂的符号;③区号;④在该区内的带号。
1p22表示为1号染色体短臂2区2带。
等位基因其实是一个集合,在同一个locus出现得基因型互为等位基因。Aa不能叫等位基因,正确的逻辑是:A和a是一组等位基因。由等位基因可以定义纯合和杂合。
二倍体与多倍体细胞的某些染色体上,在同一基因座上有相同的等位基因,这类细胞称为纯合子/同型合子(homozygous)。若是相同基因座上含有不同的等位基因,则称作杂合子/异型合子(heterozygous)。
summary statistic顾名思义,就和R里面的summary函数一样,是对GWAS数据的一个概括总结,包含了结果中最核心的信息。
ebi也提供了很多GWAS研究summary statistic的结果下载,https://www.ebi.ac.uk/gwas/summary-statistics
GWAS的基本原理
如何跑GWAS?
Power
Effect size
Major allele,
Minor allele,
Minor allele frequency (MAF),
Missingness per genotype,
Missingness per individuals,
metrics that we look at include
linkage disequilibrium (LD),
variance inflation factor (VIF),
runs of homozygosity (ROH),
These provide a broad 'summary' of the data and allow us to appropriately set thresholds for quality control. It would be wrong, for example, to run a statistical test on a genotype with high missingness because the resulting P value would be misleading and could lead to erroneous conclusions from the data.
PLINK is usually the 'go to' program for analysing GWAS data, but there are other alternatives. It is also possible to read PLINK data into R and do your own analyses, but for now there are not many programs to do that.
Further information can be found here: http://zzz.bwh.harvard.edu/plink/summary.shtml
A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis
Clumping: This is a procedure in which only the most significant SNP (i.e., lowest p value) in each LD block is identified and selected for further analyses. This reduces the correlation between the remaining SNPs, while retaining SNPs with the strongest statistical evidence.
Co‐heritability: This is a measure of the genetic relationship between disorders. The SNP‐based co‐heritability is the proportion of covariance between disorder pairs (e.g., schizophrenia and bipolar disorder) that is explained by SNPs.
Gene: This is a sequence of nucleotides in the DNA that codes for a molecule (e.g., a protein)
Heterozygosity: This is the carrying of two different alleles of a specific SNP. The heterozygosity rate of an individual is the proportion of heterozygous genotypes. High levels of heterozygosity within an individual might be an indication of low sample quality whereas low levels of heterozygosity may be due to inbreeding.
Individual‐level missingness: This is the number of SNPs that is missing for a specific individual. High levels of missingness can be an indication of poor DNA quality or technical problems.
Linkage disequilibrium (LD): This is a measure of non‐random association between alleles at different loci at the same chromosome in a given population. SNPs are in LD when the frequency of association of their alleles is higher than expected under random assortment. LD concerns patterns of correlations between SNPs.
Minor allele frequency (MAF): This is the frequency of the least often occurring allele at a specific location. Most studies are underpowered to detect associations with SNPs with a low MAF and therefore exclude these SNPs.
Population stratification: This is the presence of multiple subpopulations (e.g., individuals with different ethnic background) in a study. Because allele frequencies can differ between subpopulations, population stratification can lead to false positive associations and/or mask true associations. An excellent example of this is the chopstick gene, where a SNP, due to population stratification, accounted for nearly half of the variance in the capacity to eat with chopsticks (Hamer & Sirota, 2000).
Pruning: This is a method to select a subset of markers that are in approximate linkage equilibrium. In PLINK, this method uses the strength of LD between SNPs within a specific window (region) of the chromosome and selects only SNPs that are approximately uncorrelated, based on a user‐specified threshold of LD. In contrast to clumping, pruning does not take the p value of a SNP into account.
Relatedness: This indicates how strongly a pair of individuals is genetically related. A conventional GWAS assumes that all subjects are unrelated (i.e., no pair of individuals is more closely related than second‐degree relatives). Without appropriate correction, the inclusion of relatives could lead to biased estimations of standard errors of SNP effect sizes. Note that specific tools for analysing family data have been developed.
Sex discrepancy: This is the difference between the assigned sex and the sex determined based on the genotype. A discrepancy likely points to sample mix‐ups in the lab. Note, this test can only be conducted when SNPs on the sex chromosomes (X and Y) have been assessed.
Single nucleotide polymorphism (SNP): This is a variation in a single nucleotide (i.e., A, C, G, or T) that occurs at a specific position in the genome. A SNP usually exists as two different forms (e.g., A vs. T). These different forms are called alleles. A SNP with two alleles has three different genotypes (e.g., AA, AT, and TT).
SNP‐heritability: This is the fraction of phenotypic variance of a trait explained by all SNPs in the analysis.
SNP‐level missingness: This is the number of individuals in the sample for whom information on a specific SNP is missing. SNPs with a high level of missingness can potentially lead to bias.
Summary statistics: These are the results obtained after conducting a GWAS, including information on chromosome number, position of the SNP, SNP(rs)‐identifier, MAF, effect size (odds ratio/beta), standard error, and p value. Summary statistics of GWAS are often freely accessible or shared between researchers.
The Hardy–Weinberg (dis)equilibrium (HWE) law: This concerns the relation between the allele and genotype frequencies. It assumes an indefinitely large population, with no selection, mutation, or migration. The law states that the genotype and the allele frequencies are constant over generations. Violation of the HWE law indicates that genotype frequencies are significantly different from expectations (e.g., if the frequency of allele A = 0.20 and the frequency of allele T = 0.80; the expected frequency of genotype AT is 2*0.2*0.8 = 0.32) and the observed frequency should not be significantly different. In GWAS, it is generally assumed that deviations from HWE are the result of genotyping errors. The HWE thresholds in cases are often less stringent than those in controls, as the violation of the HWE law in cases can be indicative of true genetic association with disease risk.
Meta-analysis
Generally, if a sample includes multiple ethnic groups (e.g., Africans, Asians, and Europeans), it is recommended to perform tests of association in each of the ethnic groups separately and to use appropriate methods, such as meta‐analysis (Willer, Li, & Abecasis, 2010), to combine the results.
Fast and efficient meta‐analysis of genomewide association scans
GWAS 全基因组关联分析 | summary statistic 概括统计 | meta-analysis 综合分析的更多相关文章
- GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing
现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...
- 【GWAS文献解读】疟原虫青蒿素抗药性的全基因组关联分析
英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Na ...
- 全基因组关联分析(GWAS)的计算原理
前言 关于全基因组关联分析(GWAS)原理的资料,网上有很多. 这也是我写了这么多GWAS的软件教程,却从来没有写过GWAS计算原理的原因. 恰巧之前微博上某位小可爱提问能否写一下GWAS的计算原理. ...
- 全基因组关联分析(Genome-Wide Association Study,GWAS)流程
全基因组关联分析流程: 一.准备plink文件 1.准备PED文件 PED文件有六列,六列内容如下: Family ID Individual ID Paternal ID Maternal ID S ...
- 一行命令学会全基因组关联分析(GWAS)的meta分析
为什么需要做meta分析 群体分层是GWAS研究中一个比较常见的假阳性来源. 也就是说,如果数据存在群体分层,却不加以控制,那么很容易得到一堆假阳性位点. 当群体出现分层时,常规手段就是将分层的群体独 ...
- 全基因组关联分析(GWAS):为何我的QQ图那么飘
前段时间有位小可爱问我,为什么她的QQ图特别飘,如果你不理解怎样算飘,请看下图: 理想的QQ图应该是这样的: 我当时的第一反应是:1)群体分层造成的:2)表型分布有问题.因此让她检查一下数据的群体分层 ...
- 全基因组关联分析(GWAS)扫不出信号怎么办(文献解读)
假如你的GWAS结果出现如下图的时候,怎么办呢?GWAS没有如预期般的扫出完美的显著信号,也就没法继续发挥后续研究的套路了. 最近,nature发表了一篇文献“Common genetic varia ...
- R语言画全基因组关联分析中的曼哈顿图(manhattan plot)
1.在linux中安装好R 2.准备好画曼哈顿图的R脚本即manhattan.r,manhattan.r内容如下: #!/usr/bin/Rscript #example : Rscript plot ...
- 全基因组关联分析学习资料(GWAS tutorial)
前言 很多人问我有没有关于全基因组关联分析(GWAS)原理的书籍或者文章推荐. 其实我个人觉得,做这个分析,先从跑流程开始,再去看原理. 为什么这么说呢,因为对于初学者来说,跑流程就像一个大黑洞,学习 ...
随机推荐
- wget下载出现错误 403:Forbidden
在我尝试wget下载一张图片的时候,出现了如下错误: wget "https://k4b8k3x5.ssl.hwcdn.net/content/140516/1622-saaya-irie- ...
- XSL-FO知识点【一】
XSL-FO 用于格式化供输出的 XML 数据. 什么是 XSL-FO? XSL-FO 是用于格式化 XML 数据的语言 XSL-FO 指可扩展样式表语言格式化对象(Extensible Styles ...
- C实现除法
C实现除法 来源 Leetcode上的一个题,做完后感觉很有意义,因而记录. 实际上自己也查阅了不少的实现除法的方式,最后还是感觉这个方法是最好的,没有别的原因,就是快. 需要注意的一些点 正整数之间 ...
- 装新的python3.7时ModuleNotFoundError: No module named '_ctypes'
在编译安装新的python3.7的时候 报错 ModuleNotFoundError: No module named '_ctypes',其实是缺少了一个新需要的开发包libffi-devel,安装 ...
- idou老师教你学istio 31:Istio-proxy的report流程
Istio-proxy的report主要是将envoy采集到的连接attributes的信息上报给控制面的mixer,它的入口在request_handler_impl.cc文件中,这里需要打开ena ...
- ET·ci — 全自动软件测试调度(持续集成)平台
ET·ci 提供了编译-测试-发布解决方案,包括:自动提取配置库代码进行自动构建, 自动调度静态测试工具(如QAC)进行静态测试,自动调度单元测试工具(如Tessy)开展动态测试,自动 ...
- 0032ActiveMQ之java编码实现生产者和消费者操作队列queue
今天学习了入门级的用java编写生产者producer和消费者consumer操作activemq的queue队列,为了之后复习回顾,现做整理如下: maven工程的搭建此处不再讲解,在maven工程 ...
- docker的入门到放弃--docker基本命令
docker的镜像中国:https://www.docker-cn.com/registry-mirror 1.搜索镜像 [root@localhost ~]# docker search tomca ...
- 关于ServletContext的私有方法全局获取返回null问题getServletContext().setAttribute("count", 1)
1.在Servlet重写了init方法中获取getServletContext()报错提示为空指针 重写了init(ServletConfig)方法,但是重写的init方法内部没有调用super.in ...
- 快速开平方取倒数的算法--嵌入式ARM转载
#include<stdio.h> #include<string.h> #include <stdlib.h> /* atof */ /* 计算=1/sqrt(n ...