matplotlib 常用操作
标准的Python中用列表(list)保存一组值,可以当作数组使用。但由于列表的元素可以是任何对象,因此列表中保存的是对象的指针。这样一来,为了保存一个简单的列表[1,2,3],就需
要有三个指针和三个整数对象。对于数值运算来说,这种结构显然比较浪费内存和 CPU 计算时间。
使用numpy的array模块可以解决这个问题。细节不在此赘述。这里主要记录一些matplotlib的基本使用方法
first plot
#first plot with matplotlib
import matplotlib.pyplot as plt
plt.plot([1,3,2,4])
plt.show()
in order to avoid pollution of global namespace, it is strongly recommended to never import like:
from import *
simple plot
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0.0,6.0,0.1)
plt.plot(x, [xi**2 for xi in x],label = 'First',linewidth = 4,color = 'black')
plt.plot(x, [xi**2+2 for xi in x],label = 'second',color = 'red')
plt.plot(x, [xi**2+5 for xi in x],label = 'third')
plt.axis([0,7,-1,50])
plt.xlabel(r"$\alpha$",fontsize=20)
plt.ylabel(r'y')
plt.title('simple plot')
plt.legend(loc = 'upper left')
plt.grid(True)
plt.savefig('simple plot.pdf',dpi = 200)
print mpl.rcParams['figure.figsize'] #return 8.0,6.0
print mpl.rcParams['savefig.dpi'] #default to 100 the size of the pic will be 800*600
#print mpl.rcParams['interactive']
plt.show()
Python-3
Decorate plot with styles and types
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0.0,6.0,0.1)
plt.plot(x, [xi**2 for xi in x],label = 'First',linewidth = 4,color = 'black') #using color string to specify color
plt.plot(x, [xi**2+2 for xi in x],'r',label = 'second') #using abbreviation to specify color
plt.plot(x, [xi**2+5 for xi in x],color = (1,0,1,1),label = 'Third') #using color tuple to specify color
plt.plot(x, [xi**2+9 for xi in x],color = '#BCD2EE',label = 'Fourth') #using hex string to specify color
plt.xticks(np.arange(0.0,6.0,2.5))
plt.xlabel(r"$\alpha$",fontsize=20)
plt.ylabel(r'y')
plt.title('simple plot')
plt.legend(loc = 'upper left')
plt.grid(True)
plt.savefig('simple plot.pdf',dpi = 200)
print mpl.rcParams['figure.figsize'] #return 8.0,6.0
print mpl.rcParams['savefig.dpi'] #default to 100 the size of the pic will be 800*600
#print mpl.rcParams['interactive']
plt.show(
image
types of graph
- 2
image
Bars
import matplotlib.pyplot as plt
import numpy as np
dict = {'A': 40, 'B': 70, 'C': 30, 'D': 85}
for i, key in enumerate(dict): plt.bar(i, dict[key]);
plt.xticks(np.arange(len(dict))+0.4, dict.keys());
plt.yticks(dict.values());
plt.grid(True)
plt.show()
image_1
Pies
import matplotlib.pyplot as plt
plt.figure(figsize=(10,10));
x = [4, 9, 21, 55, 30, 18]
labels = ['Swiss', 'Austria', 'Spain', 'Italy', 'France',
'Benelux']
explode = [0.2, 0.1, 0, 0, 0.1, 0]
plt.pie(x, labels=labels, explode=explode, autopct='%1.1f%%');
plt.show()
image_2
Scatter
import matplotlib.pyplot as plt
import numpy as np
x = np.random.randn(12,20)
y = np.random.randn(12,20)
mark = ['s','o','^','v','>','<','d','p','h','8','+','*']
for i in range(0,12):
plt.scatter(x[i],y[i],marker = mark[i],color =(np.random.rand(1,3)),s=50,label = str(i+1))
plt.legend()
plt.show()
matplotlib 常用操作的更多相关文章
- matplotlib常用操作2
关于matplotlib学习还是强烈建议常去官方http://matplotlib.org/contents.html里查一查各种用法和toturial等. 下面是jupyter notebook代码 ...
- matplotlib常用操作
1.根据坐标点绘制: import numpy as np import matplotlib.pyplot as plt x = np.array([1,2,3,4,5,6,7,8]) y = np ...
- 二叉树的python可视化和常用操作代码
二叉树是一个重要的数据结构, 本文基于"二叉查找树"的python可视化 pybst 包, 做了一些改造, 可以支持更一般的"二叉树"可视化. 关于二叉树和二叉 ...
- 【三】用Markdown写blog的常用操作
本系列有五篇:分别是 [一]Ubuntu14.04+Jekyll+Github Pages搭建静态博客:主要是安装方面 [二]jekyll 的使用 :主要是jekyll的配置 [三]Markdown+ ...
- php模拟数据库常用操作效果
test.php <?php header("Content-type:text/html;charset='utf8'"); error_reporting(E_ALL); ...
- Mac OS X常用操作入门指南
前两天入手一个Macbook air,在装软件过程中摸索了一些基本操作,现就常用操作进行总结, 1关于触控板: 按下(不区分左右) =鼠标左键 control+按下 ...
- mysql常用操作语句
mysql常用操作语句 1.mysql -u root -p 2.mysql -h localhost -u root -p database_name 2.列出数据库: 1.show datab ...
- nodejs配置及cmd常用操作
一.cmd常用操作 1.返回根目录cd\ 2.返回上层目录cd .. 3.查找当前目录下的所有文件dir 4.查找下层目录cd window 二.nodejs配置 Node.js安装包及源码下载地址为 ...
- Oracle常用操作——创建表空间、临时表空间、创建表分区、创建索引、锁表处理
摘要:Oracle数据库的库表常用操作:创建与添加表空间.临时表空间.创建表分区.创建索引.锁表处理 1.表空间 ■ 详细查看表空间使用状况,包括总大小,使用空间,使用率,剩余空间 --详细查看表空 ...
随机推荐
- python安装脚本
[root@dn3 hadoop]# cat install.py #!/usr/bin/python #coding=utf- import os import sys : pass else: p ...
- minhash pyspark 源码分析——hash join table是关键
从下面分析可以看出,是先做了hash计算,然后使用hash join table来讲hash值相等的数据合并在一起.然后再使用udf计算距离,最后再filter出满足阈值的数据: 参考:https:/ ...
- wordpress实现主动推送+熊掌号推送同步进行
今天给一个朋友http://www.myunigift.cn/ 这个站点是用wordpress,今天帮他改造熊掌号,于是做了数据同步推送. 只要把下面的代码写到funtions.php里面,发布文章的 ...
- 常用的HTTP状态码,网站开发请求状态必备
成功的状态码: 200 – 服务器成功返回网页 304 – 未修改 失败的状态码: 404 – 请求的网页不存在 503 – 服务器暂时不可用 500 – 服务器内部错误 下面的不是很常用,记住上面那 ...
- Dubbo源码分析:Dubbo协议解码
Dubbo协议解码时序图
- VOJ 1049送给圣诞夜的礼物——矩阵快速幂模板
题意 顺次给出 $m$个置换,反复使用这 $m$ 个置换对一个长为 $n$ 初始序列进行操作,问 $k$ 次置换后的序列.$m<=10, k<2^31$. 题目链接 分析 对序列的置换可表 ...
- [Kubernetes] Pod Health
Kubernetes relies on Probes to determine the health of a Pod container. A Probe is a diagnostic perf ...
- mongodb 集群配置文件
本文档是在mongodb为3.4下编写的,仅作为参考,详细内容请参考:https://docs.mongodb.com/manual/reference/configuration-options/# ...
- 【JS】知识笔记
一.JS文件位置 多个.JS文件最好合并到一个文件中,减少加载页面时发送的请求数量. 某个单独页面需要的js,最好放在HTML文档的最后,</body>之前,这样能使浏览器更快地加载页面. ...
- Pytest权威教程16-经典xUnit风格的setup/teardown
目录 经典xUnit风格的setup/teardown 模块级别setup/teardown 类级别setup/teardown 方法和函数级别setup/teardown 返回: Pytest权威教 ...