泡泡一分钟: A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem
张宁 A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem
"链接:https://pan.baidu.com/s/1oj_HgQtiiKExACscYuFhJQ
提取码:7xrg"
三维位姿图优化问题的线性最小二乘初始化方法
S. M. Nasiri, H. Moradi, Senior Member, IEEE, R. Hosseini
Abstract Pose Graph Optimization (PGO) is an important optimization problem arising in robotics and machine vision applications like 3D reconstruction and 3D SLAM. Each node of pose graph corresponds to an orientation and a location. The PGO problem finds orientations and locations of the nodes from relative noisy observation between nodes. Recent investigations show that well-known iterative PGO solvers need good initialization to converge to good solutions. However, we observed that state-of-the-art initialization methods obtain good initialization only in low noise problems, and they fail in challenging problems having more measurement noise. Consequently, iterative methods may converge to bad solutions in high noise problems.
In this paper, a new method for obtaining orientations in the PGO optimization problem is presented. Like other well-known methods the initial locations are obtained from the result of a least-squares problem. The proposed method iteratively approximates the problem around current estimation and converts it to a least-squares problem. Therefore, the method can be seen as an iterative least-squares method which is computationally efficient. Simulation results show that the proposed initialization method helps the most well-known iterative solver to obtain better optima and significantly outperform other solvers in some cases.
姿态图优化(PGO)是机器人和机器视觉应用(如3D重建和3D SLAM)中出现的一个重要优化问题。位姿图的每个节点对应于方向和位置。 PGO问题从节点之间的相对噪声观察中找到节点的方向和位置。最近的研究表明,众所周知的迭代PGO求解器需要良好的初始化才能收敛到良好的求解。 然而,我们观察到最先进的初始化方法仅在低噪声问题中获得良好的初始化,并且它们在具有更多测量噪声的挑战性问题中失败。因此,迭代方法在高噪声问题中可能会收敛到不好的求解结果。
在本文中,提出了一种在PGO优化问题中获得方向的新方法。与其他众所周知的方法一样,初始位置是从最小二乘问题的结果中获得的。 所提出的方法迭代地近似于当前估计的问题并将其转换为最小二乘问题。因此,该方法可以被视为迭代最小二乘法,其在计算上是高效的。 仿真结果表明,所提出的初始化方法有助于最知名的迭代求解器在某些情况下获得更好的最优并显着优于其他求解器。
In this paper, an iterative solver was presented to find the orientation in the PGO problem. The proposed method can be used as a solver in low-noise cases and as an initialization method in high-noise cases. In each iteration, the cost function containing only orientations is approximated by a quadratic cost function and is solved by a least-squares solver.
在本文中,提出了一个迭代求解器来找出PGO问题的方向。 所提出的方法可以用作低噪声情况下的求解器和高噪声情况下的初始化方法。 在每次迭代中,仅包含方向的成本函数由二次成本函数近似,并由最小二乘求解器求解。
The proposed approach for solving the PGO problem has low computational cost. The method reaches the accuracy of traditional methods in estimating the positions and orientations in low noise datasets. It was demonstrated that using the result of the proposed algorithm as an initialization for Gauss-Newton methods improves the performance in challenging scenarios where the state-of-the-art algorithms fail in converging to a good solution.
所提出的解决PGO问题的方法具有低计算成本。 该方法在估计低噪声数据集中的位置和方向时达到了传统方法的准确性。 已经证明,使用所提出的算法的结果作为Gauss-Newton方法的初始化,改善了在最先进的算法未能收敛到良好解决方案的挑战性场景中的性能。
泡泡一分钟: A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem的更多相关文章
- 泡泡一分钟:Fast and Robust Initialization for Visual-Inertial SLAM
张宁 Fast and Robust Initialization for Visual-Inertial SLAM链接:https://pan.baidu.com/s/1cdkuHdkSi9x7l ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications
eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications eRTIS - 用于机器人应用 ...
- 泡泡一分钟:Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter
张宁 Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter 使用自适应无味卡尔曼滤波器进行姿态估计链接:https: ...
- 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features
Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators
Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...
随机推荐
- DT开发笔记-Cookie作用域的设置
当网站任意一个模块绑定了二级域名或者会员公司主页开启了二级域名时,必须设置cookie作用域,否则会导致二级域名站点不能显示正确的登录状态,js权限错误等问题(例如评论框显示不完全的现象). 进入网站 ...
- es6 let介绍及应用场景
关于更多es6建议去看阮一峰的博客~ es6入门:http://es6.ruanyifeng.com/ 源码仓库:https://github.com/ruanyf/es6tutorial let介绍 ...
- sqlite3中给表添加列
1.修改表名为临时表 ALTER TABLE {tableName} RENAME TO TempOldTable; 2.创建新表,跟原来的表名一致 CREATE TABLE {tableName} ...
- Django --- cookie与session,中间件
目录 1.cookie与session 1.cookie 2.session 2.中间件 1.中间件作用 2.用户可以自定义的五个方法 3.自定义中间件 1.cookie与session 1.cook ...
- webuploader如何实现分片+断点续传
javaweb上传文件 上传文件的jsp中的部分 上传文件同样可以使用form表单向后端发请求,也可以使用 ajax向后端发请求 1. 通过form表单向后端发送请求 <form id=&quo ...
- AJAX备忘
基础 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. AJAX ...
- CSS精灵图(王者荣耀案例)
首先,我们应该知道引入精灵图的原因: 具体是因为,网页上面的每张图片都要经历一次请求才能展示给用户,小的图标频繁的请求服务器,降低页面的加载速度,为了有效地减少服务器接收和发送请求的次数,提高页面的加 ...
- [hdu contest 2019-07-29] Azshara's deep sea 计算几何 动态规划 区间dp 凸包 graham扫描法
今天hdu的比赛的第一题,凸包+区间dp. 给出n个点m个圆,n<400,m<100,要求找出凸包然后给凸包上的点连线,连线的两个点不能(在凸包上)相邻,连线不能与圆相交或相切,连线不能相 ...
- 读取中文文件到CString
CString strFileName = _T("D:\\ai\\100.json"); CFile file; file.Open(strFileName, CFile:: ...
- vue项目开发中遇到的几个问题
1.使用elment或者mintUI库时,需要全局引入ui库的css文件:然后在修改自己样式时,需要将自己的css文件引入到main.js中才会生效,全局引用2.使用v-html展示dom字符串时,相 ...