泡泡一分钟: A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem
张宁 A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem
"链接:https://pan.baidu.com/s/1oj_HgQtiiKExACscYuFhJQ
提取码:7xrg"
三维位姿图优化问题的线性最小二乘初始化方法
S. M. Nasiri, H. Moradi, Senior Member, IEEE, R. Hosseini
Abstract Pose Graph Optimization (PGO) is an important optimization problem arising in robotics and machine vision applications like 3D reconstruction and 3D SLAM. Each node of pose graph corresponds to an orientation and a location. The PGO problem finds orientations and locations of the nodes from relative noisy observation between nodes. Recent investigations show that well-known iterative PGO solvers need good initialization to converge to good solutions. However, we observed that state-of-the-art initialization methods obtain good initialization only in low noise problems, and they fail in challenging problems having more measurement noise. Consequently, iterative methods may converge to bad solutions in high noise problems.
In this paper, a new method for obtaining orientations in the PGO optimization problem is presented. Like other well-known methods the initial locations are obtained from the result of a least-squares problem. The proposed method iteratively approximates the problem around current estimation and converts it to a least-squares problem. Therefore, the method can be seen as an iterative least-squares method which is computationally efficient. Simulation results show that the proposed initialization method helps the most well-known iterative solver to obtain better optima and significantly outperform other solvers in some cases.
姿态图优化(PGO)是机器人和机器视觉应用(如3D重建和3D SLAM)中出现的一个重要优化问题。位姿图的每个节点对应于方向和位置。 PGO问题从节点之间的相对噪声观察中找到节点的方向和位置。最近的研究表明,众所周知的迭代PGO求解器需要良好的初始化才能收敛到良好的求解。 然而,我们观察到最先进的初始化方法仅在低噪声问题中获得良好的初始化,并且它们在具有更多测量噪声的挑战性问题中失败。因此,迭代方法在高噪声问题中可能会收敛到不好的求解结果。
在本文中,提出了一种在PGO优化问题中获得方向的新方法。与其他众所周知的方法一样,初始位置是从最小二乘问题的结果中获得的。 所提出的方法迭代地近似于当前估计的问题并将其转换为最小二乘问题。因此,该方法可以被视为迭代最小二乘法,其在计算上是高效的。 仿真结果表明,所提出的初始化方法有助于最知名的迭代求解器在某些情况下获得更好的最优并显着优于其他求解器。
In this paper, an iterative solver was presented to find the orientation in the PGO problem. The proposed method can be used as a solver in low-noise cases and as an initialization method in high-noise cases. In each iteration, the cost function containing only orientations is approximated by a quadratic cost function and is solved by a least-squares solver.
在本文中,提出了一个迭代求解器来找出PGO问题的方向。 所提出的方法可以用作低噪声情况下的求解器和高噪声情况下的初始化方法。 在每次迭代中,仅包含方向的成本函数由二次成本函数近似,并由最小二乘求解器求解。
The proposed approach for solving the PGO problem has low computational cost. The method reaches the accuracy of traditional methods in estimating the positions and orientations in low noise datasets. It was demonstrated that using the result of the proposed algorithm as an initialization for Gauss-Newton methods improves the performance in challenging scenarios where the state-of-the-art algorithms fail in converging to a good solution.
所提出的解决PGO问题的方法具有低计算成本。 该方法在估计低噪声数据集中的位置和方向时达到了传统方法的准确性。 已经证明,使用所提出的算法的结果作为Gauss-Newton方法的初始化,改善了在最先进的算法未能收敛到良好解决方案的挑战性场景中的性能。
泡泡一分钟: A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem的更多相关文章
- 泡泡一分钟:Fast and Robust Initialization for Visual-Inertial SLAM
张宁 Fast and Robust Initialization for Visual-Inertial SLAM链接:https://pan.baidu.com/s/1cdkuHdkSi9x7l ...
- 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps
张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker, Maximilian Durner, Ra ...
- 泡泡一分钟:eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications
eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications eRTIS - 用于机器人应用 ...
- 泡泡一分钟:Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter
张宁 Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter 使用自适应无味卡尔曼滤波器进行姿态估计链接:https: ...
- 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features
Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...
- 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...
- 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking
Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...
- 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning
张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...
- 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators
Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...
随机推荐
- 如何解决redis的并发竞争问题?
这个也是线上非常常见的一个问题,就是多客户端同时并发写一个key,可能本来应该先到的数据后到了,导致数据版本错了.或者是多客户端同时获取一个key,修改值之后再写回去,只要顺序错了,数据就错了. 而且 ...
- memcached的缺点
上篇博客说了为什么引入memcached,主要讲述了memcached的优点,接下来就是我们在使用中必须要注意的内容,memcached的缺点,只有正确认识它,才能运用自如,接下来先看一下memcac ...
- 评估预测函数(3)---Model selection(选择多项式的次数) and Train/validation/test sets
假设我们现在想要知道what degree of polynomial to fit to a data set 或者 应该选择什么features 或者 如何选择regularization par ...
- LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)
链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...
- 4、MapReduce思想、运行机制
MapReduce 离线计算框架 分而治之 input > map > shuffle > reduce > output 分布式并行的计算框架 将计算过程分为两个阶段,Map ...
- leetcode解题报告(26):Add Binary
描述 Given two binary strings, return their sum (also a binary string). For example, a = "11" ...
- Ceph osd故障恢复
1 调高osd的日志等级 加上红框那一行就可以了 osd的日志路径:/var/log/ceph/ceph-osd.3.log 注意:加上了这一行后日志会刷很多,所以要特别注意日志容量的变化,以防把v ...
- Go程序员面试算法宝典-读后感2-链表
链表作为最基本的数据结构,它不仅仅在实际应用中有着非常重要的作用,而且也是程序员面试笔试必考的内容. 详情请Google吧. 1.如何实现链表的逆序 就地逆序 package main import ...
- TCP的几个知识点
1. 三次握手.四次挥手 详细查看:https://www.cnblogs.com/amiezhang/p/6703390.html 2. ARQ 协议 ARQ 就是超时重传机制,分为 2 种:停止等 ...
- 如何用elasticsearch构架亿级数据采集系统(第1集:非生产环境windows安装篇)
(一)做啥的? 基于Elasticsearch,可以为实现,大数据量(亿级)的实时统计查询的方案设计,提供底层数据框架. 本小节jacky会在非生产环境下,在 window 系统下,给大家分享着部分的 ...