张宁 A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem
 "链接:https://pan.baidu.com/s/1oj_HgQtiiKExACscYuFhJQ
提取码:7xrg"

三维位姿图优化问题的线性最小二乘初始化方法

S. M. Nasiri, H. Moradi, Senior Member, IEEE, R. Hosseini

Abstract Pose Graph Optimization (PGO) is an important optimization problem arising in robotics and machine vision applications like 3D reconstruction and 3D SLAM. Each node of pose graph corresponds to an orientation and a location. The PGO problem finds orientations and locations of the nodes from relative noisy observation between nodes. Recent investigations show that well-known iterative PGO solvers need good initialization to converge to good solutions. However, we observed that state-of-the-art initialization methods obtain good initialization only in low noise problems, and they fail in challenging problems having more measurement noise. Consequently, iterative methods may converge to bad solutions in high noise problems.

In this paper, a new method for obtaining orientations in the PGO optimization problem is presented. Like other well-known methods the initial locations are obtained from the result of a least-squares problem. The proposed method iteratively approximates the problem around current estimation and converts it to a least-squares problem. Therefore, the method can be seen as an iterative least-squares method which is computationally efficient. Simulation results show that the proposed initialization method helps the most well-known iterative solver to obtain better optima and significantly outperform other solvers in some cases.

姿态图优化(PGO)是机器人和机器视觉应用(如3D重建和3D SLAM)中出现的一个重要优化问题。位姿图的每个节点对应于方向和位置。 PGO问题从节点之间的相对噪声观察中找到节点的方向和位置。最近的研究表明,众所周知的迭代PGO求解器需要良好的初始化才能收敛到良好的求解。 然而,我们观察到最先进的初始化方法仅在低噪声问题中获得良好的初始化,并且它们在具有更多测量噪声的挑战性问题中失败。因此,迭代方法在高噪声问题中可能会收敛到不好的求解结果。

在本文中,提出了一种在PGO优化问题中获得方向的新方法。与其他众所周知的方法一样,初始位置是从最小二乘问题的结果中获得的。 所提出的方法迭代地近似于当前估计的问题并将其转换为最小二乘问题。因此,该方法可以被视为迭代最小二乘法,其在计算上是高效的。 仿真结果表明,所提出的初始化方法有助于最知名的迭代求解器在某些情况下获得更好的最优并显着优于其他求解器。

In this paper, an iterative solver was presented to find the orientation in the PGO problem. The proposed method can be used as a solver in low-noise cases and as an initialization method in high-noise cases. In each iteration, the cost function containing only orientations is approximated by a quadratic cost function and is solved by a least-squares solver.

在本文中,提出了一个迭代求解器来找出PGO问题的方向。 所提出的方法可以用作低噪声情况下的求解器和高噪声情况下的初始化方法。 在每次迭代中,仅包含方向的成本函数由二次成本函数近似,并由最小二乘求解器求解。

The proposed approach for solving the PGO problem has low computational cost. The method reaches the accuracy of traditional methods in estimating the positions and orientations in low noise datasets. It was demonstrated that using the result of the proposed algorithm as an initialization for Gauss-Newton methods improves the performance in challenging scenarios where the state-of-the-art algorithms fail in converging to a good solution.

所提出的解决PGO问题的方法具有低计算成本。 该方法在估计低噪声数据集中的位置和方向时达到了传统方法的准确性。 已经证明,使用所提出的算法的结果作为Gauss-Newton方法的初始化,改善了在最先进的算法未能收敛到良好解决方案的挑战性场景中的性能。

泡泡一分钟: A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem的更多相关文章

  1. 泡泡一分钟:Fast and Robust Initialization for Visual-Inertial SLAM

    张宁  Fast and Robust Initialization for Visual-Inertial SLAM链接:https://pan.baidu.com/s/1cdkuHdkSi9x7l ...

  2. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  3. 泡泡一分钟:eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications

    eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications eRTIS  - 用于机器人应用 ...

  4. 泡泡一分钟:Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter

    张宁 Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter 使用自适应无味卡尔曼滤波器进行姿态估计链接:https: ...

  5. 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features

    Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...

  6. 泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

    作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测 ...

  7. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  8. 泡泡一分钟:Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning

    张宁 Cooperative Object Transportation by Multiple Ground and Aerial Vehicles: Modeling and Planning 多 ...

  9. 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators

    Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...

随机推荐

  1. 大数据之路week07--day06 (Sqoop 的使用)

    Sqoop的使用一(将数据库中的表数据上传到HDFS) 首先我们先准备数据 1.没有主键的数据(下面介绍有主键和没有主键的使用区别) -- MySQL dump 10.13 Distrib 5.1.7 ...

  2. vetur 和 npm run lint 格式化不一致

    vetur 的 template(html) 默认使用的格式化插件是 prettyhtml,虽然可以选 prettier,和 npm run lint 的格式化保持一致,但是有时候会影响到 scrip ...

  3. 题解 UVa10943

    题目大意 多组数据,每组数据给定两个整数 \(n,k\),求出用 \(k\) 个不超过 \(n\) 的数相加得到 \(n\) 的方案数(不同顺序不算同种). 分析 计数水题.令 \(f_{i,j}\) ...

  4. Leonardo的笔记本LA 3641——置换的乘法

    题意 给出26个大写字母的置换 $B$,问是否存在一个置换 $A$,使得 $A^2=B$. 分析 首先,若A=BC,若B和C都能表示成两个相同循环的乘积,则A也能. 因为,不相交的循环的乘积满足交换律 ...

  5. Kubernetes 学习24 helm入门

    一.概述 1.我们此前在使用kubernetes中,无论我们使用无状态的应用程序,比如myapp,nginx.以及有状态的tomcat,redis,etcd,...等等,他们部署在k8s之上会有这样的 ...

  6. learning java AWT 手绘窗口

    import java.awt.*;port java.awt.event.ActionListener; import java.awt.event.MouseAdapter; import jav ...

  7. zabbix的历史数据存储到elasticsearch中

    基本配置项 https://www.jianshu.com/p/bffca8128e8f 官方说这个实验性的功能支持es的版本是5.0.x - > 6.1.x,如果使用早期或更高版本的Elast ...

  8. test命令用法。功能:检查文件和比较值

    test命令用法.功能:检查文件和比较值 1)判断表达式 if test  (表达式为真) if test !表达式为假 test 表达式1 –a 表达式2                  两个表达 ...

  9. C语言定义结构体指针数组并初始化;里面全是结构体的地址

    #include <stdio.h> #include <string.h> struct tells;//声明结构体 struct info { char *infos; } ...

  10. BZOJ 1406: [AHOI2007]密码箱

    二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...