平衡树前传之BST

二叉查找树(\(BST\)),是一个类似于堆的数据结构,

并且,它也是平衡树的基础.

因此,让我们来了解一下二叉查找树吧.

(其实本篇是作为放在平衡树前的前置知识的,但为了避免重复懒得写就单独拎了出来)

首先,二叉查找树,是一个树形的数据结构废话,树上的每个节点有一个权值\(val\).

而树中的任意一个节点,都满足以下性质:

  1. 该节点的权值不小于它左子树中任意节点的权值.

  2. 该节点的权值不大于它右子树中任意节点的权值.

显然,二叉查找树的中序遍历就是一个递增序列.

那么接下来,让我们了解\(BST\)的操作吧.

step 1:BST的建立

其实这个很简单,就是为了避免越界而插入\(INF\)和\(-INF\)而已.

看代码吧(是不是好简单):

struct BST{int l,r,val;}t[100001];
int tot=0,rt/*根节点*/,INF=1<<30; inline int New(int val){
t[++tot].val=val;
return tot;
} inline void build(){
New(-INF);New(INF);
rt=1;t[1].r=2;
}

step 2:BST的查找

查找也很好理解.

假设我们要查找的是权值\(v\),

那么根据两条性质,

若\(v\)小于当前节点的权值,就往左走,否则就往又走.

相等或者是空节点(即没有)时,就返回.

上代码(应该很好想吧):

int find(int p,int val){
if(!p||t[p].val==val) return p;
return find(val<t[p].val? t[p].l:t[p].r,val);
}

step 3:BST的插入

shanchu其实这和查找的想法一样.

插入时,若已经插入过,就直接返回(或根据题目情况而定),

到空节点时,就新建节点.

step 4:BST求前驱&后继

就拿前驱为例子吧(因为道理是一样的).

首先,我们先去找要求的点\(p\),

那么有几种情况:

  1. 没有找到\(p\).
  2. 找到了\(p\),但\(p\)无左子树.
  3. 找到了\(p\),且\(p\)有左子树.

对于第一种情况,答案就在寻找过的路径中.

因为如果要插入\(p\)的话,它肯定在它前驱的右子树中(模拟一下插入就知道了).

而第二种情况,由于没有左子树,因此答案也在之前的路径中.

第三种的话,我们先找到它的左子树,再一直往右走,就能找到了(根据BST的性质仔细想想就能理解了).

来上代码吧:

inline int getpre(int val){
int ans=1,p=rt;//t[1].val=-INF
while(p){
if(val==t[p].val){
if(!t[p].l) return ans;
p=t[p].l;
while(t[p].r) p=t[p].r;
return p;
}
if(t[p].val<val&&t[p].val>t[ans].val) ans=p;
p=val<t[p].val? t[p].l:t[p].r;
}
return ans;
}

step 5:BST的删除

删除就要复杂一些了qwq.

如果是空节点,就直接返回.(先排除掉一种情况)

那么假设我们找到了要删除的点,

还有三种情况:

  1. \(p\)为叶子节点.
  2. \(p\)无左/右子树.
  3. \(p\)有左/右子树.

对于第一种,直接删掉就好.

而第二种的话,就可以用子节点代替它.

第三种有点难想啊...

其实,我们可以找出它的前驱/后继节点(就是上一步的第三种情况).

然后再代替它就行啦.

来上代码吧:

inline void remove(int &p,int val){
if(!p) return ;
if(val==t[p].val){
if(!t[p].l) p=t[p].r;
else if(!t[p].r) p=t[p].l;
else {
int next=t[p].r;
while(t[p].l) p=t[p].l;
remove(t[p].r,t[next].val);
t[next].l=t[p].l;t[next].r=t[p].r;
p=next;
}
return ;
}
remove(val<t[p].val? t[p].l:t[p].r,val);
}

总结

BST的几个操作都讲完啦!

然而,发现一件事没?

如果我们依次插入一个递增/递减序列,BST就会被卡成一条链.

因此,我们有了平衡树...

[学习笔记] 二叉查找树/BST的更多相关文章

  1. 二叉查找树学习笔记(BST)

    我土了....终于开始看平衡树了,以前因为害怕一直不敢看数据结构...浑浑噩噩跟同学落了1—2个数据结构没看....果然,我是最弱的 二叉查找树,遵守每个点的左儿子小于点小于右儿子. 于是,BST能够 ...

  2. BST,Splay平衡树学习笔记

    BST,Splay平衡树学习笔记 1.二叉查找树BST BST是一种二叉树形结构,其特点就在于:每一个非叶子结点的值都大于他的左子树中的任意一个值,并都小于他的右子树中的任意一个值. 2.BST的用处 ...

  3. 【数据结构与算法Python版学习笔记】树——二叉查找树 Binary Search Tree

    二叉搜索树,它是映射的另一种实现 映射抽象数据类型前面两种实现,它们分别是列表二分搜索和散列表. 操作 Map()新建一个空的映射. put(key, val)往映射中加入一个新的键-值对.如果键已经 ...

  4. 「学习笔记」Treap

    「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...

  5. Treap-平衡树学习笔记

    平衡树-Treap学习笔记 最近刚学了Treap 发现这种数据结构真的是--妙啊妙啊~~ 咳咳.... 所以发一发博客,也是为了加深蒟蒻自己的理解 顺便帮助一下各位小伙伴们 切入正题 Treap的结构 ...

  6. 平衡树splay学习笔记#2

    讲一下另外的所有操作(指的是普通平衡树中的其他操作) 前一篇的学习笔记连接:[传送门],结尾会带上完整的代码. 操作1,pushup操作 之前学习过线段树,都知道子节点的信息需要更新到父亲节点上. 因 ...

  7. 《it项目管理那些事》学习笔记

    此书适合:计算及相关专业的学生,想成为测试工程师.软件工程师.进入项目经理的人,或者经验丰富的it经理人. 之所以称为学习笔记,是加上我从百度搜到一些在看书过程中不明白的it语,作为菜鸟的我,得多看看 ...

  8. [学习笔记]平衡树(Splay)——旋转的灵魂舞蹈家

    1.简介 首先要知道什么是二叉查找树. 这是一棵二叉树,每个节点最多有一个左儿子,一个右儿子. 它能支持查找功能. 具体来说,每个儿子有一个权值,保证一个节点的左儿子权值小于这个节点,右儿子权值大于这 ...

  9. 23 DesignPatterns学习笔记:C++语言实现 --- 2.1 Bridge

    23 DesignPatterns学习笔记:C++语言实现 --- 2.1 Bridge 2016-07-22 (www.cnblogs.com/icmzn) 模式理解  

随机推荐

  1. kubernetes第一章--介绍

  2. python在linux中import cv2问题

    python中import cv2遇到的错误及安装方法标签 1 错误: ImportError: libXext.so.6: cannot open shared object file: No su ...

  3. Jwt Token 令牌

    /* 采用JWT的生成TOKEN,及APP登录Token的生成和解析 */ public class JwtTokenUtil { /** * token秘钥 */ public static fin ...

  4. jenkens 安装是git版本过低 升级

    Jenkins本机默认使用"yum install -y git" 安装的git版本比较低,应该自行安装更高版本的git. 查看jenkins本机的git版本 1 2 [root@ ...

  5. mysql:[Err] 1075 - Incorrect table definition; there can be only one auto column and it must be defined as a key

    删除主键时,出错:[Err] 1075 - Incorrect table definition; there can be only one auto column and it must be d ...

  6. vi / vim 字符替换详解

    :s/idoxu/isTester.com/g 替换当前行所有 idoxu 为 isTester.com :n,$s/idoxu/isTester.com/ #替换第 n 行开始到最后一行中每一行的第 ...

  7. 2013.6.21 - OpenNER第一天

    下午去实验室继续写实验报告,跟伟杰要了一个实验报告,然后大师兄叫我,我们在走廊唠了一会儿. 大 师兄想做Open NE,他说这个会比较难,目前没有人做,因为还没有发现相关的文章,大家研究的都是指定了哪 ...

  8. IDEA实用教程(九)—— 创建Servlet

    4. 创建Servlet 1) 第一步 2) 第二步 3) 第三步 4) 第四步 由于新创建的Web项目, 没有Tomcat环境, 所以创建的Servlet会发生导包错误,如下图所示 : 因此我们需要 ...

  9. InvenSense 美国公司

    InvenSense为智能型运动处理方案的先驱.全球业界的领导厂商,驱动了运动感测人机接口在消费性电子产品上的应用.公司提供的集成电路(IC)整合了运动传感器-陀螺仪以及相对应的软件,有别于其他厂商, ...

  10. vscode beautiful配置

    在工作目录下建立.jsbeautifyrc文件 官方文档 { "brace_style": "none,preserve-inline", "inde ...