句子的依赖结构表现在哪些单词依赖哪些单词。单词之间的这种关系及可以表示为优先级之间的关系等。

Dependency Parsing

通常情况下,对于一个输入句子:\(S=w_{0} w_{1} \dots w_{n}\)。 我们用 \(w_{0}\) 来表示 ROOT,我们将这个句子转换成一个图 G。

依赖性解析通常分为训练与预测两步:

  1. 使用已经解析的注释库训练模型 M
  2. 得到模型 M之后,对于句子 S,通过模型解析出图 G。

基于转换的依赖性解析

该方法就是通过训练数据训练一个状态机,通过状态机转换对源语句进行解析。

基于贪心确定性过渡的解析

这个转换的系统本质也是一个状态机,但是不同的是,对于一个初始状态,会有多个终止状态。

对于每一个源语句 \(S=w_{0} w_{1} \dots w_{n}\) 每个状态可以表示成三部分 \(c=(\sigma, \beta, A)\) 。

  1. 第一部分 \(\sigma\) 用来存储来自 S 的 \(w_i\) ,使用栈存储
  2. \(\beta\) 表示一个来自 S 的缓冲
  3. A 表示 \(\left(w_{i}, r, w_{j}\right)\) 的集合,其中 \(w_{i}, w_{j}\) 来自 S,然后 r 表示 \(w_{i}, w_{j}\)之间的关系。

状态初始化:

  1. 初始状态是 \(C_0\) 可以表示为 \(\left[w_{0}\right]_{\sigma},\left[w_{1}, \ldots, w_{n}\right]_{\beta}, \varnothing\)。可以看到只有 \(w_0\) 在 \(\sigma\) 中,其它的 \(w_i\) 都在 \(\beta\) 中。还没有任何关系。
  2. 终止状态就是 \(\sigma,[ ]_{\beta}, A\) 形式。

状态转换的方法:

  1. 从缓存中移除一个单词兵放在 \(\sigma\) 栈顶,
  2. \(\mathrm{L} \mathrm{EFT}-\mathrm{A} \mathrm{RC}_{r}(l)\):将 \(\left(w_{j}, r, w_{i}\right)\) 添加至集合 A,\(w_{i}\) 是栈 \(\sigma\) 的第二个数据,\(w_{j}\) 是栈顶的单词,将 \(w_{i}\) 从栈中移除,这个 ARC 关系用 \(l\) 表示。
  3. \(\mathrm{RIGHT}-\mathrm{ARC}_{r}(l)\):将 \(\left(w_{i}, r, w_{j}\right)\) 添加到集合 A, \(w_{i}\)是栈的第二个单词,

神经依赖性解析

神经以来解析的效果要好于传统的方法。主要区别是神经依赖解析的特征表示。

我们描述的模型使用 arc 系统作为变换,我们的目的就是将原序列变成一个目的序列。就是完成解析树。这个过程可以看作是一个 encode 的过程。

Feature Selection:

第一步就是要进行特征的选择,对于神经网络的输入,我们需要定义一些特征,一般有以下这些:

\(S_{w o r d}\):S 中一些单词的向量表示

\(S_{\text {tag}}\):S 中一些单词的 Part-of-Speech (POS) 标签,POS 标签包含一个小的离散的集合:\(\mathcal{P}=\{N N, N N P, N N S, D T, J J, \dots\}\)

\(S_{l a b el}\):S 中一些单词的 arc-labels ,这个标签包含一个小的离散集合,描述依赖关系:\(\mathcal{L}=\{\) $amod, tmod $, \(n s u b j, c s u b j, d o b j\), \(\ldots\}\)

在神经网络中,我们还是首先会对这个输入处理,将这些编码从 one-hot 编码变成稠密的向量编码

对于单词的表示我们使用 \(e_{i}^{w} \in \mathbb{R}^{d}\)。使用的转换矩阵就是 \(E^{w} \in \mathbb{R}^{d \times N_{w}}\)。其中 \(N_w\) 表示字典的大小。\(e_{i}^{t}, e_{j}^{l} \in \mathbb{R}^{d}\) 分别表示第 \(i\) 个POS标签与第 \(j\) 个ARC 标签。对应的矩阵就是 \(E^{t} \in \mathbb{R}^{d \times N_{t}}\) and \(E^{l} \in \mathbb{R}^{d \times N_{l}}\)。其中 \(N_t\) 和 \(N_L\) 分别表示所有的 POS标签 与 ARC标签的个数。我们用 \(S^{w}, S^{t}, S^{l}\) 来表示 word, POS,ARC 的信息。

例如对于上面的这个图:

\(S_{tag}= \left\{l c_{1}\left(s_{2}\right) . t, s_{2} .t, r c_{1}\left(s_{2}\right) . t, s_{1} .t\right\}\)。然后我们将这些信息变成输入层的向量,比如对于单词来说,\(x^{w}=\left[e_{w_{1}}^{w} ; e_{w_{2}}^{w} ; \ldots e_{w_{n} w}^{w}\right]\)。其中 \(S_{word}=\left\{w_{1}, \ldots, w_{n_w}\right\}\),表示输入层的信息。同样的方式,我们可以获取到 \(x^t\) 与 \(x^l\)。然后我们经过一个隐含层,这个比较好理解:
\[
h=\left(W_{1}^{w} x^{w}+W_{1}^{t} x^{t}+W_{1}^{l} x^{l}+b_{1}\right)^{3}
\]
然后再经过一个 \(softmax\) 的输出层 \(p=\operatorname{softmax}\left(W_{2} h\right)\), 其中 \(W_2\) 是一个输出的矩阵,\(W_{2} \in \mathbb{R}|\mathcal{T}| \times d_{h}\)。

POS and label embeddings

就像单词的词典一样,我们对 POS 与 ARC 也有一个集合,其中 \(\mathcal{P}=\{\mathrm{NN}, \mathrm{NNP} ,\mathrm{NNS}, \mathrm{DT}, J J, \ldots \}\) 表示单词的一些性质, 例如 \(NN\) 表示单数名词。对于 \(\mathcal{L}=\{\)$ amod, tmod, nsubj, csubj, dobj$, \(\ldots\}\)表示单词间的关系。

Dependency Parsing的更多相关文章

  1. Dependency Parsing -13 chapter(Speech and Language Processing)

    https://web.stanford.edu/~jurafsky/slp3/13.pdf constituent-based 基于成分的phrasal constituents and phras ...

  2. 依存分析 Dependency Parsing

    依存分析 Dependency Parsing 句子成分依存分析主要分为两种:句法级别的和语义级别的 依存句法分析 syntactic dependency parsing 语义依存分词 semant ...

  3. 【神经网络】Dependency Parsing的两种解决方案

    一.Transition-based的依存解析方法 解析过程:首先设计一系列action, 其就是有方向带类型的边,接着从左向右依次解析句子中的每一个词,解析词的同时通过选择某一个action开始增量 ...

  4. Transaction Replication6:Transaction cleanup

    distribution中暂存的Transactions和Commands必须及时cleanup,否则,distribution size会一直增长,最终导致数据更新耗时增加,影响replicatio ...

  5. ZH奶酪:自然语言处理工具LTP语言云调用方法

    前言 LTP语言云平台 不支持离线调用: 支持分词.词性标注.命名实体识别.依存句法分析.语义角色标注: 不支持自定义词表,但是你可以先用其他支持自定义分词的工具(例如中科院的NLPIR)把文本进行分 ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. RNN and LSTM saliency Predection Scene Label

    http://handong1587.github.io/deep_learning/2015/10/09/rnn-and-lstm.html  //RNN and LSTM http://hando ...

  8. 我和NLP的故事(转载)

    正值ACL录用结果发布,国内的老师和同学们又是一次大丰收,在这里再次恭喜所有论文被录用的老师和同学们!我人品爆发,也收获了自己硕士阶段的第二篇ACL论文.本来只是想单纯分享下自己中论文的喜悦,但没成想 ...

  9. awesome-nlp

    awesome-nlp  A curated list of resources dedicated to Natural Language Processing Maintainers - Keon ...

随机推荐

  1. Java 之 Cookie

    Cookie 一.会话概述 1.会话:一次会话中包含多次请求和响应.       一次会话:浏览器第一次给服务器资源发送请求,会话建立,直到有一方断开为止. 2.功能: 在一次会话的范围内的多次请求间 ...

  2. 英语Affrike非洲Affrike单词

    中文名称阿非利加洲(全称) 外文名称Africa 别 名Affrike 行政区类别洲 下辖地区北非.东非.西非.中非.南非 地理位置东濒印度洋,西临大西洋,北至地中海,南至好望角 面 积3022万平方 ...

  3. SpringCloud之服务注册与发现Eureka+客户端Feign

    前言 SpringCloud 是微服务中的翘楚,最佳的落地方案. Eureka 作为注册中心,是 SpringCloud 体系中最重要最核心的组件之一. Feign 使用接口加注解的方式调用服务,配合 ...

  4. nodejs SSL Error: CERT_UNTRUSTED while using npm command 错误

    SSH 使用错误,其实我们关掉HTTPS就好了 npm config set strict-ssl false 或者 npm config set registry="http://regi ...

  5. selenium窗口句柄以及对话框处理

    多窗口.句柄: 1.获取当前句柄:driver.current_window_handle 2.获取所有句柄:driver.window_handles 3.切换句柄:driver.switch_to ...

  6. Node.js 入门到干活,10 个优质项目就够了!

    Node.js 在很多大公司都有不错的实践,比如:淘宝.天猫 Web 版,很多页面都是在 Node 服务器上渲染的.还有各种脚手架.前端打包发布工具.构建生态的小工具,也基本都是 Node.js 编写 ...

  7. vsftp网络服务

    1. vsftp概述 FTP是File Transfer Protocol(文本传输协议)的简称,用于Internet上的文件的双向传输.使用FTP传输时,具有一定程度的危险性,因为数据在因特网上面是 ...

  8. 【HCIA Gauss】学习汇总-数据库管理(SQL语法 数据类型 函数)-4

    DDL data definition language 数据库定义语言 定义修改等DML data manipulation language 数据库操控语言 增删改 DCL data crontr ...

  9. NGINX状态模块的使用

    nginx状态模块可以用来查看当前nginx服务器的并发量和总的请求数 启用nginx的状态模块 状态模块需要在编译安装的时候启用. 1.下载nginx源码包 2.安装nginx并启用模块 3.修改n ...

  10. Everything 配置问题导致信息泄露复现

    0x00 简介 Everything是一个私有的免费Windows桌面搜索引擎,可以在NTFS卷上快速地根据名称查找文件和目录. "Everything" 是 Windows 上一 ...