C++高精度整数加减乘除模板
其中高精度乘法通过了POJ2389,其他没有测过,不过应该是没有问题的。
其中高精度除法返回一对string,分别表示商和余数。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010;
int a[maxn], b[maxn], res[maxn];
string add(string s1, string s2) { // under condition: s1,s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = max(n, m) + 1;
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < len; i ++) {
res[i] += a[i] + b[i];
if (res[i] >= 10) {
res[i+1] += res[i] / 10;
res[i] %= 10;
}
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
}
string sub(string s1, string s2) { // under condition: s1>=s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = max(n, m);
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < len; i ++) {
res[i] += a[i] - b[i];
if (res[i] < 0) {
res[i+1] --;
res[i] += 10;
}
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
}
bool cmp(string s1, string s2) { // under condition: s1,s2 >= 0
int n = s1.length(), m = s2.length();
int i;
for (i = 0; i < n-1 && s1[i] == '0'; i ++);
s1 = s1.substr(i);
for (i = 0; i < m-1 && s2[i] == '0'; i ++);
s2 = s2.substr(i);
if (s1.length() != s2.length()) return s1.length() < s2.length();
return s1 < s2;
}
string Add(string s1, string s2) {
if (s1[0] == '-' && s2[0] == '-') {
return "-" + add(s1.substr(1), s2.substr(1));
}
else if (s1[0] == '-') {
s1 = s1.substr(1);
if (cmp(s1, s2) == true) {
return sub(s2, s1);
} else {
return "-" + sub(s1, s2);
}
}
else if (s2[0] == '-') {
s2 = s2.substr(1);
if (cmp(s1, s2) == true) {
return "-" + sub(s2, s1);
} else {
return sub(s1, s2);
}
}
else {
return add(s1, s2);
}
}
string Sub(string s1, string s2) {
if (s2[0] == '-') {
s2 = s2.substr(1);
return Add(s1, s2);
}
else {
return Add(s1, "-" + s2);
}
}
string multi(string s1, string s2) { // under condition: s1,s2>=0
// 初始化部分
int n = s1.length(), m = s2.length();
for (int i = 0; i < n; i ++) a[i] = s1[n-1-i] - '0';
for (int i = 0; i < m; i ++) b[i] = s2[m-1-i] - '0';
int len = n + m;
for (int i = n; i < len; i ++) a[i] = 0;
for (int i = m; i < len; i ++) b[i] = 0;
for (int i = 0; i < len; i ++) res[i] = 0;
// 处理部分
for (int i = 0; i < n; i ++)
for (int j = 0; j < m; j ++)
res[i+j] += a[i] * b[j];
for (int i = 0; i < len; i ++) {
res[i+1] += res[i] / 10;
res[i] %= 10;
}
// 返回部分
int i = len-1;
while (res[i] == 0 && i > 0) i --;
string s = "";
for (; i >= 0; i --) {
char c = (char) (res[i] + '0');
s += c;
}
return s;
}
pair<string, string> divide(string s1, string s2) { // under condition: s1>=0,s2>0
string s = "", t = "";
int n = s1.length(), m = s2.length();
bool flag = false;
for (int i = 0; i < n; i ++) {
s += s1[i];
int num = 0;
while (cmp(s, s2) == false) {
num ++;
s = sub(s, s2);
}
if (num > 0) {
flag = true;
char c = (char)(num + '0');
t += c;
}
else if (flag) {
t += '0';
}
}
if (t.length() == 0) t = "0";
while (s[0] == '0' && s.length() > 1) s = s.substr(1);
return make_pair(t, s);
}
string s1, s2;
int main() {
while (cin >> s1 >> s2) {
cout << "add:\t" << Add(s1, s2) << endl;
cout << "sub:\t" << Sub(s1, s2) << endl;
cout << "multi:\t" << multi(s1, s2) << endl;
pair<string, string> divide_pair = divide(s1, s2);
cout << "divide:\t" << divide_pair.first << " ...... " << divide_pair.second << endl;
}
return 0;
}
测试数据:
100 9
add: 109
sub: 91
multi: 900
divide: 11 ...... 1
1000000 87
add: 1000087
sub: 999913
multi: 87000000
divide: 11494 ...... 22
C++高精度整数加减乘除模板的更多相关文章
- Java 实现大整数加减乘除
自己用Java实现的大整数加减乘除运算.还有可以改进的地方,有兴趣的童鞋可以加以改进.仅供参考,请勿转载! package barrytest; import java.util.ArrayList; ...
- Java中的高精度整数和高精度小数
在实际编码中,会遇到很多高精度的事例,比如,在计算金钱的时候就需要保留高精度小数,这样计算才不会有太大误差: 在下面的代码中,我们验证了,当两个float型的数字相加,得到的结果和我们的预期结果是有误 ...
- 高精度整数 - a+b(王道)
题目描述: 实现一个加法器,使其能够输出a+b的值. 输入: 输入包括两个数a和b,其中a和b的位数不超过1000位. 输出: 可能有多组测试数据,对于每组数据,输出a+b的值 样例输入: 2 6 1 ...
- Pollard-Rho大整数拆分模板
随机拆分,简直机智. 关于过程可以看http://wenku.baidu.com/link?url=JPlP8watmyGVDdjgiLpcytC0lazh4Leg3s53WIx1_Pp_Y6DJTC ...
- ACM高精度加减乘除模板
[转]#include <iostream> #include <string> using namespace std; inline int compare(string ...
- C++高精度加减乘除模板
其中高精度乘法通过了POJ2389,其他没有测过,不过应该是没有问题的. 其中高精度除法返回一对string,分别表示商和余数. 代码: #include <bits/stdc++.h> ...
- PAT A1024题解——高精度大数相加模板
PAT:A1024 Palindromic Number A number that will be the same when it is written forwards or backwards ...
- POJ 1504 Adding Reversed Numbers (水题,高精度整数加法)
题意:给两个整数,求这两个数的反向数的和的反向数,和的末尾若为0,反向后则舍去即可.即若1200,反向数为21.题目给出的数据的末尾不会出现0,但是他们的和的末尾可能会出现0. #include &l ...
- ALU底层方法及计算机整数加减乘除模拟
ALU是计算机CPU的核心,即 算术逻辑单元(arithmetic and logic unit)ALU有几大功能,是计算机计算最基础的功能:1.算术运算:包含加法.减法等2.逻辑运算:主要是布尔运算 ...
随机推荐
- LightOJ - 1102 - Problem Makes Problem(组合数)
链接: https://vjudge.net/problem/LightOJ-1102 题意: As I am fond of making easier problems, I discovered ...
- Java编译器的优化
public class Notice { public static void main(String[] args) { // 右侧20是一个int类型,但没有超过左侧数值范围,就是正确的 // ...
- Set的常用实现类HashSet和TreeSet
Set HashSet public static void main(String[] args) { //不可以重复 并且是无序的 //自然排序 从A-Z //eqauls从Object继 ...
- 16、job触发流程原理剖析与源码分析
一.以Wordcount为例来分析 1.Wordcount val lines = sc.textFile() val words = lines.flatMap(line => line.sp ...
- 深度Linux /etc/profile 环境变量生效问题
/etc/profile 环境变量生效问题 设置了环境变量后 ,使用source /etc/profile生效后,每次关闭终端后,都需要重新输入source /etc/profile命令使环境变量生效 ...
- UOJ#469. 【ZJOI2019】开关 生成函数
原文链接www.cnblogs.com/zhouzhendong/p/UOJ469.html 前言 clytql当场秒掉此题可惜不知道为什么fst了. 题解 考虑构建指数生成函数. 对于第 \(i\) ...
- 小程序的基本原生js使用
1.点击事件 <a data-current="{{setting.current}}" bindtap="clickcurrent" style=&qu ...
- vue项目开发中遇到的几个问题
1.使用elment或者mintUI库时,需要全局引入ui库的css文件:然后在修改自己样式时,需要将自己的css文件引入到main.js中才会生效,全局引用2.使用v-html展示dom字符串时,相 ...
- 消息队列Rabbit MQ 学习第一篇
1 介绍 1.1RabbitMQ MQ全称为Message Queue,即消息队列, RabbitMQ是由erlang语言开发,基于AMQP(Advanced Message Queue 高级消息队 ...
- leetcode 61. 旋转链表
题目描述: 给定一个链表,旋转链表,将链表每个节点向右移动 k 个位置,其中 k 是非负数. 示例 1: 输入: 1->2->3->4->5->NULL, k = 2 输 ...