day36——死锁、递归锁、信号量、GIL、多线程实现socket通信、线程池和进程池
day36
死锁现象与递归锁
死锁现象
是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁

from threading import Thread
from threading import Lock
import time
lock_A = Lock()
lock_B = Lock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
lock_A.acquire()
print(f"{self.name}拿到了A锁")
lock_B.acquire()
print(f"{self.name}拿到了B锁")
lock_B.release()
lock_A.release()
def f2(self):
lock_B.acquire()
print(f"{self.name}拿到了B锁")
time.sleep(0.1)
lock_A.acquire()
print(f"{self.name}拿到了A锁")
lock_A.release()
lock_B.release()
if __name__ == '__main__':
for i in range(3):
t = MyThread()
t.start()
结果:
Thread-1拿到了A锁
Thread-1拿到了B锁
Thread-1拿到了B锁
Thread-2拿到了A锁
未结束
递归锁
递归锁可以解决死锁现象,业务需要多个锁时,先要考虑递归锁
递归锁有一个计数的功能,原数字为0,上一次锁计数+1,释放一次锁计数-1
只要递归锁上面的数字不为零,其他线程就不能枪锁
总结定义:RLock,同一把锁,引用一次计数+1,释放一次计数-1,只要计数不为零,其他线程进程就抢不到,他能解决死锁问题
from threading import Thread
from threading import RLock
import time
lock_B = lock_A = RLock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
lock_A.acquire()
print(f"{self.name}拿到了A锁")
lock_B.acquire()
print(f"{self.name}拿到了B锁")
lock_B.release()
lock_A.release()
def f2(self):
lock_B.acquire()
print(f"{self.name}拿到了B锁")
time.sleep(0.1)
lock_A.acquire()
print(f"{self.name}拿到了A锁")
lock_A.release()
lock_B.release()
if __name__ == '__main__':
for i in range(10):
t = MyThread()
t.start()
信号量
也是一种锁,控制并发数量
总结定义:同一时刻可以设置抢锁的线程或者进程数量
同进程的一样
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()
实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):
from threading import Thread, Semaphore, current_thread
import time
import random
sem = Semaphore(5)
def task():
sem.acquire()
·
print(f"{current_thread().name} 厕所ing")
time.sleep(random.randint(1, 3))
sem.release()
if __name__ == '__main__':
for i in range(20):
t = Thread(target=task)
t.start()
GIL全局解释器锁
总结定义:全局解释器锁,同一时刻只能一个线程进入解释器,Cpython解释器具有的。
好多自称大神的说,GIL锁是python的致命缺陷,python不能多核,并发不行等等。。。。

理论上来说:单个进程的多线程可以利用多核
但是开发Cpython解释器的程序员,给解释器加了锁

为什么加锁?
1、当时都是单核时代,而且cpu价格非常贵
2、如果不加全局解释器锁,开发Cpython解释器的程序员就会在源码内部各种主动加锁,解锁,非常麻烦,各种死锁现象等等,他为了省事就直接给解释器加了一个锁
- 优点:保证了Cpython解释器的数据资源的安全
- 缺点:单个进程的多线程不能利用多核
Jpython没有GIL锁
pypy也没有GIL锁
现在多核时代,我将Cpython的GIL去掉行不?
因为Cpython解释器所有的业务逻辑都是围绕着单个线程实现的,去掉这个GIL锁,几乎不可能

单个进程的多线程可以并发,但是不能利用多核进行并行
多个进程可以并发,并行
IO密集型

计算密集型

GIL与lock锁的区别
相同点
都是同种锁,互斥锁
不同点
- GIL锁是全局解释器锁,保护解释器内部的资源数据的安全
- GIL锁,上锁,释放无需手动操作
- 自己代码中定义的互斥锁保护进程中的资源数据的安全
- 自己定义的互斥锁必须自己手动上锁,释放锁

验证计算密集型IO密集型的效率
计算密集型
单个进程的多线程并发 vs 多个进程的并发并行
总结:计算密集型:多进程的并发并行效率高
from threading import Thread
from multiprocessing import Process
import time
import random
def task():
count = 0
for i in range(10000000):
count += 1
if __name__ == '__main__':
# 多进程的并发,并行
start_time = time.time()
l1 = []
for i in range(4):
p = Process(target=task)
l1.append(p)
p.start()
for j in l1:
j.join()
print(f"执行效率:{time.time() - start_time}") # 1.5881953239440918
# 多线程的并发
start_time = time.time()
l1 = []
for i in range(4):
p = Thread(target=task)
l1.append(p)
p.start()
for j in l1:
j.join()
print(f"执行效率:{time.time() - start_time}") # 5.415819883346558
IO密集型
IO密集型:单个进程的多线程并发 vs 多个进程的并发进行
对于IO密集型:单个进程的多线程的并发效率高
from threading import Thread
from multiprocessing import Process
import time
import random
def task():
count = 0
time.sleep(random.randint(1, 3))
count += 1
if __name__ == '__main__':
# 多进程的并发,并行
start_time = time.time()
l1 = []
for i in range(50):
p = Process(target=task)
l1.append(p)
p.start()
for j in l1:
j.join()
print(f"执行效率:{time.time() - start_time}") # 4.230581283569336
# 多线程的并发
start_time = time.time()
l1 = []
for i in range(50):
p = Thread(target=task)
l1.append(p)
p.start()
for j in l1:
j.join()
print(f"执行效率:{time.time() - start_time}") # 3.011176347732544
多线程实现socket通信
server
import socket
from threading import Thread
def _accept():
server = socket.socket()
server.bind(("127.0.0.1", 8848))
server.listen(5)
while 1:
conn, addr = server.accept()
t = Thread(target=communicate, args=(conn, addr))
t.start()
def communicate(conn, addr):
while 1:
try:
from_client_data = conn.recv(1024)
print(f"来自客户端{addr[1]}的消息:{from_client_data.decode('utf-8')}")
to_client_data = input(">>>").strip()
conn.send(to_client_data.encode("utf-8"))
except Exception:
break
conn.close()
if __name__ == '__main__':
_accept()
client
import socket
client = socket.socket()
client.connect(("127.0.0.1", 8848))
while 1:
try:
to_server_data = input(">>>").strip()
client.send(to_server_data.encode("utf-8"))
from_server_data = client.recv(1024)
print(f"来自服务端的消息:{from_server_data.decode('utf-8')}")
except Exception:
break
client.close()
进程池、线程池
无论是多线程还是多进程,如果按照上面的写法,来一个客户端请求,我就开一个线程,来一个请求开一个线程
应该是这样:你的计算机允许范围内,开启的线程进程数量越多越好
线程池:一个容器,这个容器限制住你开启线程的数量,比如4个,第一次肯定只能并发的处理4个任务,只要有任务完成,线程马上就会接着执行下一个任务
进程池:一个容器,这个容器限制住你开启进程的数量,比如4个,第一次并行的处理4个任务,只要有任务完成,进程马上就会接着执行下一个任务
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
import os
import time
import random
# print(os.cpu_count())
def task(n):
print(f"{os.getpid()}接客")
time.sleep(random.randint(1, 3))
if __name__ == '__main__':
# 开启进程池(并行+并发)
p = ProcessPoolExecutor(4) # 默认不写,进程池里面的进程数与cpu里面的内核个数相等
#
# # p.submit(task,1)
# # p.submit(task,1)
# # p.submit(task,1)
# # p.submit(task,1)
# # p.submit(task,1)
# # p.submit(task,1)
for i in range(22):
p.submit(task, 1)
# 开启线程池 (并发)
# t = ThreadPoolExecutor() # 默认不写,cpu内核个数*5=线程数
t = ThreadPoolExecutor(8) # 100个线程
for i in range(50):
t.submit(task, i)
day36——死锁、递归锁、信号量、GIL、多线程实现socket通信、线程池和进程池的更多相关文章
- python并发编程-多线程实现服务端并发-GIL全局解释器锁-验证python多线程是否有用-死锁-递归锁-信号量-Event事件-线程结合队列-03
目录 结合多线程实现服务端并发(不用socketserver模块) 服务端代码 客户端代码 CIL全局解释器锁****** 可能被问到的两个判断 与普通互斥锁的区别 验证python的多线程是否有用需 ...
- 并发编程---死锁||递归锁---信号量---Event事件---定时器
死锁 互斥锁:Lock(),互斥锁只能acquire一次 递归锁: RLock(),可以连续acquire多次,每acquire一次计数器+1,只有计数为0时,才能被抢到acquire # 死锁 f ...
- GIL全局解释器锁-死锁与递归锁-信号量-event事件
一.全局解释器锁GIL: 官方的解释:掌握概念为主 """ In CPython, the global interpreter lock, or GIL, is a m ...
- 同步锁 死锁与递归锁 信号量 线程queue event事件
二个需要注意的点: 1 线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock任然没有被释放则阻塞,即便是拿到执行权限GIL也要 ...
- 线程锁&信号量&gil
线程锁 线程锁的主要目的是防止多个线程之间出现同时抢同一个数据,这会造成数据的流失.线程锁的作用类似于进程锁,都是为了数据的安全性 下面,我将用代码来体现进程锁的作用: from threading ...
- Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量
Python进阶----线程基础,开启线程的方式(类和函数),线程VS进程,线程的方法,守护线程,详解互斥锁,递归锁,信号量 一丶线程的理论知识 什么是线程: 1.线程是一堆指令,是操作系统调度 ...
- GIL全局解释器锁,线程池与进程池 同步异步,阻塞与非阻塞,异步回调
GIL全局解释器锁 1.什么是GIL 官方解释:'''In CPython, the global interpreter lock, or GIL, is a mutex that prevents ...
- 多进程 multiprocessing 多线程Threading 线程池和进程池concurrent.futures
multiprocessing.procsess 定义一个函数 def func():pass 在if __name__=="__main__":中实例化 p = process( ...
- 并发编程:GIL,线程池,进程池,阻塞,非阻塞,同步,异步
一 GIL(global interpreter lock) GIL中文叫全局解释器锁,我们执行一个文件会产生一个进程,那么我们知道进程不是真正的执行单位,而是资源单位,所以进程中放有解释器(cpy ...
随机推荐
- IntelliJ IDEA 查找两个字符之间任意内容正则表达式
表达式: A.*?B(“.“表示任意字符,“?”表示匹配0个或多个)
- 基于Kafka的实时计算引擎如何选择?(转载)
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...
- element ui input 输入时触发事件
<el-form-item label="客户名" :label-width="labelWidth"> <el-input v-model= ...
- D3.js的v5版本入门教程(第三章)—— 选择元素和绑定数据
D3.js的v5版本入门教程(第三章) 在D3.js中,选择元素和绑定元素是最基本的内容,也是很重要的内容,等你看完整个教程后你会发现,这些D3.js教程都是在选择元素和绑定元素的基础上展开后续工作的 ...
- Pycharm使用git版本控制
一.使用Pycharm进行版本控制 01 从远程仓库克隆项目 从远程仓库将一个已存在的项目克隆到本地 打开pycharm, VCS --> Checkout from Version Contr ...
- 用docker构建redis cluster
下面内容大部分借鉴自: http://louz.github.io/2016/08/11/docker-redis-cluster/ docker pull redis:3.0.7 #映射6379端口 ...
- tomcat启动慢的解决办法
SessionIdGeneratorBase.createSecureRandom Creation of SecureRandom instance for session ID generatio ...
- Research Guide for Neural Architecture Search
Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbe ...
- 更新Alpine Linux源 sed -i 's/dl-cdn.alpinelinux.org/mirrors.ustc.edu.cn/g' /etc/apk/repositories apk add xxx
更新Alpine Linux源 国内镜像源 清华TUNA镜像源:https://mirror.tuna.tsinghua.edu.cn/alpine/中科大镜像源:http://mirrors.ust ...
- [转]vue项目中 指令 v-html 中使用过滤器filters功能
转载于简书 链接:http://www.jianshu.com/p/29b7eaabd1ba 问题 2.0 filters only work in mustache tags and v-bind. ...