Cogs 1708. 斐波那契平方和(矩阵乘法)
- 斐波那契平方和
★★☆ 输入文件:fibsqr.in 输出文件:fibsqr.out 简单对比
时间限制:0.5 s 内存限制:128 MB
【题目描述】
,对 1000000007 取模。F0=0,F1=1,F2=1
【输入格式】
一行一个整数 N
【输出格式】
一行一个整数 Ans
【样例输入】
4
【样例输出】
15
【数据范围】
1≤ N ≤1015
/*
矩阵乘法.
n
定理:∑f[i]^2=f[n]*f[n+1].
i=1
Codevs3969的n<=10^50000直接弃疗了.
(20W遍快速幂 字符串处理是O(L)的然后就T了。。。
这个定理证明的话就是网上那个著名的
与斐波那契相关的图.
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#define mod 1000000007
#define LL long long
using namespace std;
char ch[50010];
int n[50010];
LL ans[3][3],b[3][3],c[3][3],tot,l;
bool check()
{
for(int i=1;i<=l;i++) if(n[i]) return true;
return false;
}
void Div()
{
for(int i=l;i>=1;i--)
{
n[i-1]+=10*(n[i]%2);
n[i]/=2;
}
while(!n[l]) l--;
}
void mi()
{
while(check())
{
if(n[1]&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
Div();
}
}
void slove()
{
ans[1][1]=1,ans[1][2]=0;
b[1][1]=b[1][2]=b[2][1]=1;
mi();
tot=(ans[1][1]%mod*ans[1][2]%mod)%mod;
}
int main()
{
freopen("fibsqr.in","r",stdin);
freopen("fibsqr.out","w",stdout);
cin>>ch+1;l=strlen(ch+1);
for(int i=1;i<=l;i++) n[i]=ch[l-i+1]-48;
slove();
cout<<tot;
return 0;
}
Cogs 1708. 斐波那契平方和(矩阵乘法)的更多相关文章
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- 牛客练习赛63 牛牛的斐波那契字符串 矩阵乘法 KMP
LINK:牛牛的斐波那契字符串 虽然sb的事实没有改变 但是 也不会改变. 赛时 看了E和F题 都不咋会写 所以弃疗了. 中午又看了一遍F 发现很水 差分了一下就过了. 这是下午和古队长讨论+看题解的 ...
- 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造
一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...
- poj3070 (斐波那契,矩阵快速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9630 Accepted: 6839 Descrip ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
随机推荐
- idea多级目录不展开的问题
遇见了一个坑,idea新建的包,和它的上级包重叠在了一起,无法形成树状结构 原因呢,还是因为自己的不细心了,解决方案很简单,下面的是原情况 解决方案,点击左侧栏右上角的设置图表,注意看红框内 把第一行 ...
- Oracle 11g安装过程工作Oracle数据库安装图解
一.Oracle 下载 注意Oracle分成两个文件,下载完后,将两个文件解压到同一目录下即可. 路径名称中,最好不要出现中文,也不要出现空格等不规则字符. 官方下地址: oracle.com/tec ...
- Hook executed successfully but returned HTTP 403
jenkins配置gitlab的webhook,完成配置,测试结果显示 Hook executed successfully but returned HTTP 403 解决: 进入jenkins: ...
- Git提交代码解决方案
最近做项目不再用小乌龟了,开始用git,便做了记录如下,后期可以看看自己是怎么使用的 下载安装就不说了,直接进入使用环节. 1.使用规则 git pull origin master 和 gi ...
- 【转载】C#中List集合使用Reverse方法对集合中的元素进行倒序反转
在C#的List集合操作中,有时候需要对List集合中的元素的顺序进行倒序反转操作,此时就可使用到List集合中的Reverse方法来实现此功能,Reverse方法的签名为void Reverse() ...
- SQL*Plus 格式化查询结果
为了在 SQL*Plus 环境中生成符合用户需要规范的报表,SQL*Plus 工具提供了多个用于格式化查询结果的命令,使用这些命令可以实现设置列的标题.定义输出值的显示格式和显示宽度.为报表增加头标题 ...
- Qt环境搭建
下载 qtcreator:http://download.qt.io/official_releases/qtcreator/ 编译器(mingw):http://download.qt.io/dev ...
- Arm存储器
Arm可以引出27根地址线,只能实现128MB的寻址,那么要如何实现1GB的寻址呢?答案就是使用nGCS片选线,nGCSx为低电平为选中相应的外接设备.一共八根片选线,也就是bank1,bank2-以 ...
- vue_插槽的理解和使用
对于插槽的概念和使用,这是vue的一个难点,这需要我们静下心来,慢慢研究.以下是我这两天通过官网和其他资料的学习和使用总结出来的笔记,如有错误或者有不同见解的,欢迎留言,一起学习. 什么是插槽? 插槽 ...
- LAMP环境搭建之编译安装指南(php-5.3.27.tar.gz)
测试环境:CentOS release 6.5 (Final) 软件安装:httpd-2.2.27.tar.gz mysql-5.1.72.tar.gz php-5.3.27.tar.gz 1 ...
,对 1000000007 取模。F0=0,F1=1,F2=1