Cogs 1708. 斐波那契平方和(矩阵乘法)
- 斐波那契平方和
★★☆ 输入文件:fibsqr.in 输出文件:fibsqr.out 简单对比
时间限制:0.5 s 内存限制:128 MB
【题目描述】
,对 1000000007 取模。F0=0,F1=1,F2=1
【输入格式】
一行一个整数 N
【输出格式】
一行一个整数 Ans
【样例输入】
4
【样例输出】
15
【数据范围】
1≤ N ≤1015
/*
矩阵乘法.
n
定理:∑f[i]^2=f[n]*f[n+1].
i=1
Codevs3969的n<=10^50000直接弃疗了.
(20W遍快速幂 字符串处理是O(L)的然后就T了。。。
这个定理证明的话就是网上那个著名的
与斐波那契相关的图.
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#define mod 1000000007
#define LL long long
using namespace std;
char ch[50010];
int n[50010];
LL ans[3][3],b[3][3],c[3][3],tot,l;
bool check()
{
for(int i=1;i<=l;i++) if(n[i]) return true;
return false;
}
void Div()
{
for(int i=l;i>=1;i--)
{
n[i-1]+=10*(n[i]%2);
n[i]/=2;
}
while(!n[l]) l--;
}
void mi()
{
while(check())
{
if(n[1]&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
Div();
}
}
void slove()
{
ans[1][1]=1,ans[1][2]=0;
b[1][1]=b[1][2]=b[2][1]=1;
mi();
tot=(ans[1][1]%mod*ans[1][2]%mod)%mod;
}
int main()
{
freopen("fibsqr.in","r",stdin);
freopen("fibsqr.out","w",stdout);
cin>>ch+1;l=strlen(ch+1);
for(int i=1;i<=l;i++) n[i]=ch[l-i+1]-48;
slove();
cout<<tot;
return 0;
}
Cogs 1708. 斐波那契平方和(矩阵乘法)的更多相关文章
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...
- [codevs]1250斐波那契数列<矩阵乘法&快速幂>
题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...
- 牛客练习赛63 牛牛的斐波那契字符串 矩阵乘法 KMP
LINK:牛牛的斐波那契字符串 虽然sb的事实没有改变 但是 也不会改变. 赛时 看了E和F题 都不咋会写 所以弃疗了. 中午又看了一遍F 发现很水 差分了一下就过了. 这是下午和古队长讨论+看题解的 ...
- 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造
一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...
- poj3070 (斐波那契,矩阵快速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9630 Accepted: 6839 Descrip ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
随机推荐
- quartz2.3.0系列目录——带您由浅入深全面掌握quartz2.3.0
quartz2.3.0系列目录 官网下载地址:http://www.quartz-scheduler.org/downloads/ 本系列demo全部来源于官网,仅仅是简化和汉化了注释!一部分代码de ...
- oralce数据表空间满了
--切换至oralce用户 su - oracle--执行sqlplus / as sysdba --查询表空间使用情况SELECT Upper(F.TABLESPACE_NAME) "表空 ...
- [转]mongodb authentication 设置权限之后,新建个管理账户和一般数据库用户,在win 7 64bit 环境下测试使用实例
如果之前安装mongodb时没有使用 --auth,那么必须要卸载MongoDB服务,进行重新安装,设置账号权限才生效! 主要是解决在测试使用mongo db 时候,总是出现的MongoAuthent ...
- 【转载】C#中List集合使用RemoveRange方法移除指定索引开始的一段元素
在C#的List集合操作中,移除集合中的元素可以使用Remove方法和RemoveAt方法,这两个方法都是进行单个List集合元素的移除,其实List集合中还有个RemoveRange方法来移除一整段 ...
- Qt 利用飞机图片画五边形
最近练习Qt,需要一个飞机在屏幕上画五边形.虽然达到的效果不是非常的理想,但是勉强还是达到了效果,欢迎大家指正.用到的飞机图片如下. 第一步:初始化,在构造函数里面,把图片向左旋转18° );ui.l ...
- stm32 CAN过滤器组
在互联型产品中, CAN1和CAN2分享28个过滤器组 其它STM32F103xx系列产品中有14个过滤器组 位宽设置 四种配置方式: 1个32位的屏蔽位模式 2个32位的标识符列表模式,可以过滤2个 ...
- redhat6.7环境下oracle11gR2 RAC静默安装
(一)基础环境 虚拟机环境 :vmware workstation 12 操作系统 : redhat6.7 - 64bit 数据库版本 :11.2.0.4 (二)安装前的环境准备 (2.1)配置 ...
- Android笔记(五十一) 短信验证码集成——mob平台
官方网站:www.mob.com 注册帐号,下载SDK,导入SDK就不说了,主要写一下简单集成如何使用,以后忘记了也可以翻着看看. 详细的可以参考官方文档: http://wiki.mob.com/a ...
- 学习python的日常4
偏函数: 偏函数是functools模块提供的一个功能,偏函数可以通过设定参数的默认值,降低函数调用的难度 其中设定的参数默认值实际上是可以被传入为其他值的,最后创建偏函数时可接收函数对象.*args ...
- Docker 容器介绍
Docker 容器介绍 Docker 是一个基于 Go 语言的开源应用容器引擎,它既能实现虚拟化,又可用于将应用服务打包成轻量.可移植的容器,从而可以发布到任何 Linux 平台.除了优秀了沙箱机制外 ...
,对 1000000007 取模。F0=0,F1=1,F2=1