Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9944   Accepted: 2677

Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.  Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

Source

 
用long long 才过啊!!!
 
 
 
 #include <stdio.h>
#include <string.h>
#include <math.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
int cnt,p[N+],flag[N+];
void get_prime()
{
int i,j;
for(i=;i<N;i++)
{
if(!flag[i])
p[cnt++]=i;;
for(j=;j<cnt&&p[j]*i<N;j++)
{
flag[i*p[j]]=;
if(i%p[j]==)
break;
}
}
} int a[],pp[];
int main()
{
get_prime();
//printf("%d**%d**\n",p[0],p[1]);
ll l,r,i,j;
while(~scanf("%lld%lld",&l,&r))
{
//if(l>r)swap(l,r);
if(l<)l=;
for(i=;i<=r-l;i++)a[i]=;
ll sum=r-l+;//printf("*****\n");
for(i=;a[i]<=r&&i<cnt;i++)
for(j=l/p[i]*p[i];j<=r;j+=p[i])
{
if(j>=l&&j/p[i]>&&a[j-l])
a[j-l]=,sum--;
} if(sum<){printf("There are no adjacent primes.\n");continue;} ll cp=;
for(i=;i<=r-l;i++)
if(a[i]) pp[cp++]=i+l;
ll max,min,pos1,pos2;
max=min=pp[]-pp[];
pos1=pos2=;
for(i=;i<cp;i++)
{
if(max<pp[i]-pp[i-])
{
max=pp[i]-pp[i-];
pos1=i;
}
if(min>pp[i]-pp[i-])
{
min=pp[i]-pp[i-];
pos2=i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",pp[pos2-],pp[pos2],pp[pos1-],pp[pos1]) ;
}
return ;
}

poj 2689 Prime Distance(区间筛选素数)的更多相关文章

  1. POJ - 2689 Prime Distance (区间筛)

    题意:求[L,R]中差值最小和最大的相邻素数(区间长度不超过1e6). 由于非素数$n$必然能被一个不超过$\sqrt n$的素数筛掉,因此首先筛出$[1,\sqrt R]$中的全部素数,然后用这些素 ...

  2. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  3. poj 2689 Prime Distance (素数二次筛法)

    2689 -- Prime Distance 没怎么研究过数论,还是今天才知道有素数二次筛法这样的东西. 题意是,要求求出给定区间内相邻两个素数的最大和最小差. 二次筛法的意思其实就是先将1~sqrt ...

  4. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  5. 数论 - 素数的运用 --- poj 2689 : Prime Distance

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12512   Accepted: 3340 D ...

  6. POJ 2689.Prime Distance-区间筛素数

    最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  7. POJ 2689 Prime Distance (素数筛选法,大区间筛选)

    题意:给出一个区间[L,U],找出区间里相邻的距离最近的两个素数和距离最远的两个素数. 用素数筛选法.所有小于U的数,如果是合数,必定是某个因子(2到sqrt(U)间的素数)的倍数.由于sqrt(U) ...

  8. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  9. POJ 2689 Prime Distance (素数+两次筛选)

    题目地址:http://poj.org/problem?id=2689 题意:给你一个不超过1000000的区间L-R,要你求出区间内相邻素数差的最大最小值,输出相邻素数. AC代码: #includ ...

随机推荐

  1. Java数据结构与算法(4):二叉查找树

    一.二叉查找树定义 二叉树每个节点都不能有多于两个的儿子.二叉查找树是特殊的二叉树,对于树中的每个节点X,它的左子树中的所有项的值小于X中的项,而它的右子树中所有项的值大于X中的项. 二叉查找树节点的 ...

  2. 获取项目配置的常用方法(Struts/Servlet)

    struts: //web.xml中: <context-param> <param-name>paramName</param-name> <param-v ...

  3. 尚硅谷Docker---1-5、docker简介

    尚硅谷Docker---1-5.docker简介 一.总结 一句话总结: docker是环境打包:有点像windows镜像 docker的实质:缩小版.精细版.高度浓缩版的一个小型的linux系统 1 ...

  4. java虚拟机规范-运行时数据区

    前言 java虚拟机是java跨平台的基石,本文的描述以jdk7.0为准,其他版本可能会有一些微调. 引用 java虚拟机规范 数据类型 java总共有两种数据类型:基本类型和引用类型.java虚拟机 ...

  5. 自定义控件 - 切换开关:SwitchView

    自定义控件一般的几个步骤:1.初始化相关背景图片,布局文件,自定义属性2.设置控件宽高OnMeasure()3.布局或者排版OnLayout()4.绘制控件OnDraw()5.处理触摸事件OnTouc ...

  6. jobs的后台进程程序如何终止?

    好像没有专门的jobs相关的命令来终止后台进程, 只有通过 jobs -l看 后台进程的pid, 然后用kill来终止. 摘录: (( 进程的终止 后台进程的终止: 方法一: 通过jobs命令查看jo ...

  7. SQL数据库字段添加说明文字

    1.查看指定表中的所有带说明文字的字段内容 SELECT *,OBJECT_NAME(major_id) AS obj_name FROM sys.extended_properties WHERE ...

  8. VUE(vue对象的简单属性)

    一:全局过滤器和局部过滤器 ps:不管是局部过滤器还是全局过滤器,一定都要有renturn 返回 <!DOCTYPE html> <html lang="en"& ...

  9. CentOS7设置启动模式问题

    参考地址 https://www.linuxidc.com/Linux/2015-12/126356.htm

  10. Vue中解决路由切换,页面不更新的实用方法

    前言:vue-router的切换不同于传统的页面的切换.路由之间的切换,其实就是组件之间的切换,不是真正的页面切换.这也会导致一个问题,就是引用相同组件的时候,会导致该组件无法更新,也就是我们口中的页 ...