Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9944   Accepted: 2677

Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.  Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

Source

 
用long long 才过啊!!!
 
 
 
 #include <stdio.h>
#include <string.h>
#include <math.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
int cnt,p[N+],flag[N+];
void get_prime()
{
int i,j;
for(i=;i<N;i++)
{
if(!flag[i])
p[cnt++]=i;;
for(j=;j<cnt&&p[j]*i<N;j++)
{
flag[i*p[j]]=;
if(i%p[j]==)
break;
}
}
} int a[],pp[];
int main()
{
get_prime();
//printf("%d**%d**\n",p[0],p[1]);
ll l,r,i,j;
while(~scanf("%lld%lld",&l,&r))
{
//if(l>r)swap(l,r);
if(l<)l=;
for(i=;i<=r-l;i++)a[i]=;
ll sum=r-l+;//printf("*****\n");
for(i=;a[i]<=r&&i<cnt;i++)
for(j=l/p[i]*p[i];j<=r;j+=p[i])
{
if(j>=l&&j/p[i]>&&a[j-l])
a[j-l]=,sum--;
} if(sum<){printf("There are no adjacent primes.\n");continue;} ll cp=;
for(i=;i<=r-l;i++)
if(a[i]) pp[cp++]=i+l;
ll max,min,pos1,pos2;
max=min=pp[]-pp[];
pos1=pos2=;
for(i=;i<cp;i++)
{
if(max<pp[i]-pp[i-])
{
max=pp[i]-pp[i-];
pos1=i;
}
if(min>pp[i]-pp[i-])
{
min=pp[i]-pp[i-];
pos2=i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",pp[pos2-],pp[pos2],pp[pos1-],pp[pos1]) ;
}
return ;
}

poj 2689 Prime Distance(区间筛选素数)的更多相关文章

  1. POJ - 2689 Prime Distance (区间筛)

    题意:求[L,R]中差值最小和最大的相邻素数(区间长度不超过1e6). 由于非素数$n$必然能被一个不超过$\sqrt n$的素数筛掉,因此首先筛出$[1,\sqrt R]$中的全部素数,然后用这些素 ...

  2. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  3. poj 2689 Prime Distance (素数二次筛法)

    2689 -- Prime Distance 没怎么研究过数论,还是今天才知道有素数二次筛法这样的东西. 题意是,要求求出给定区间内相邻两个素数的最大和最小差. 二次筛法的意思其实就是先将1~sqrt ...

  4. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  5. 数论 - 素数的运用 --- poj 2689 : Prime Distance

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12512   Accepted: 3340 D ...

  6. POJ 2689.Prime Distance-区间筛素数

    最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  7. POJ 2689 Prime Distance (素数筛选法,大区间筛选)

    题意:给出一个区间[L,U],找出区间里相邻的距离最近的两个素数和距离最远的两个素数. 用素数筛选法.所有小于U的数,如果是合数,必定是某个因子(2到sqrt(U)间的素数)的倍数.由于sqrt(U) ...

  8. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  9. POJ 2689 Prime Distance (素数+两次筛选)

    题目地址:http://poj.org/problem?id=2689 题意:给你一个不超过1000000的区间L-R,要你求出区间内相邻素数差的最大最小值,输出相邻素数. AC代码: #includ ...

随机推荐

  1. YJJ's Salesman

    YJJ's Salesman YJJ is a salesman who has traveled through western country. YJJ is always on journey. ...

  2. Anyhashable打印格式化

    NSLog("<LocalContactMatch>: \(bestAttemptContent.userInfo as AnyObject)")

  3. Qt之zip压缩/解压缩(QuaZIP)

    摘要: 简述 QuaZIP是使用Qt/C++对ZLIB进行简单封装的用于压缩及解压缩ZIP的开源库.适用于多种平台,利用它可以很方便的将单个或多个文件打包为zip文件,且打包后的zip文件可以通过其它 ...

  4. Azure Monitor Kibana configuration always seems to send over SSL

    https://github.com/elastic/logstash/issues/10125 https://blogs.cisco.com/security/step-by-step-setup ...

  5. P1080国王游戏

    传送 最大值最小什么的一看就是二分了qwq 然鹅并不知道怎么检查,所以我们换个思路 我们要求出最小的最大值,这肯定和大臣的排列有关,会不会有什么规律? 先看看只有两个大臣的情况 排列:1 2,ans1 ...

  6. 【C++进阶:STL常见性质】

    STL中的常用容器包括:顺序性容器(vector.deque.list).关联容器(map.set).容器适配器(queue.stac) 转载自:https://blog.csdn.net/u0134 ...

  7. iview在项目中遇到的坑

    1.下拉框选中某一项搜索发现总是搜不到,最后发现是选中后选中值后边莫名多了很长的空格,原因很简单,在代码中opction闭合标签和主体没有在一行. 2.iview+vue项目中,用百分比或者displ ...

  8. base64编解码的另外几个版本

    #include "crypto/encode/base64.h" static const std::string base64_chars = "ABCDEFGHIJ ...

  9. C#模块初始化注入

    这个功能可以实现很多很有用的功能,比如程序集加密,Hook安装等.英文转载备忘.   原地址:https://www.coengoedegebure.com/module-initializers-i ...

  10. Zotero引用文献格式(软件学报)

    最近在写一篇综述,要处理大量引用文献,选用Zotero作为文献管理工具.在插入参考文献目录时需要遵循格式,奈何网上找不到<软件学报>对应的csl模板文件,所以决定自己动手修改.在此记录下自 ...