Spark-Core RDD行动算子
1、reduce(func)
通过func函数聚集RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据。
scala> val rdd1 = sc.parallelize(1 to 100)
scala> rdd1.reduce(_ + _)
res0: Int = 5050
scala> val rdd2 = sc.parallelize(Array(("a", 1), ("b", 2), ("c", 3)))
scala> rdd2.reduce((x, y) => (x._1 + y._1, x._2 + y._2))
res2: (String, Int) = (abc,6)
2、collect
以数组的形式返回 RDD 中的所有元素.
所有的数据都会被拉到 driver 端, 所以要慎用
3、count
返回 RDD 中元素的个数.
4、take(n)
返回 RDD 中前 n 个元素组成的数组.
take 的数据也会拉到 driver 端, 应该只对小数据集使用
5、first
返回 RDD 中的第一个元素. 类似于take(1).
6、takeOrdered(n,[ordering])
返回排序后的前 n 个元素, 默认是升序排列.
数据也会拉到 driver 端
scala> val rdd1 = sc.makeRDD(Array(100, 20, 130, 500, 60))
scala> rdd1.takeOrdered(2)
res6: Array[Int] = Array(20, 60)
scala> rdd1.takeOrdered(2)(Ordering.Int.reverse)
res7: Array[Int] = Array(500, 130)
7、aggregate
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
aggregate函数将每个分区里面的元素通过seqOp和初始值进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。
这个函数最终返回的类型不需要和RDD中元素类型一致
zeroValue分区内聚合和分区间聚合的时候各会使用一次
scala> val rdd1 = sc.makeRDD(Array(100, 30, 10, 30, 1, 50, 1, 60, 1), 2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at makeRDD at <console>:24
scala> rdd1.aggregate(0)(_ + _, _ + _)
res12: Int = 283
scala> val rdd1 = sc.makeRDD(Array("a", "b", "c", "d"), 2)
rdd1: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[9] at makeRDD at <console>:24
scala> rdd1.aggregate("-")(_ + _, _ + _)
res13: String = --ab-cd
8、fold
折叠操作,aggregate的简化操作,seqop和combop一样的时候,可以使用fold
scala> val rdd1 = sc.makeRDD(Array(100, 30, 10, 30, 1, 50, 1, 60, 1), 2)
scala> rdd1.fold(0)(_ + _)
scala> val rdd1 = sc.makeRDD(Array("a", "b", "c", "d"), 2)
scala> rdd1.fold("-")(_ + _)
res17: String = --ab-cd
9、saveAsTextFile(path)
作用:将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark 将会调用toString方法,将它装换为文件中的文本
10、saveAsSequenceFile(path)
作用:将数据集中的元素以 Hadoop sequencefile 的格式保存到指定的目录下,可以使 HDFS 或者其他 Hadoop 支持的文件系统。
11、saveAsObjectFile(path)
作用:用于将 RDD 中的元素序列化成对象,存储到文件中。
12、countByKey()
作用:针对(K,V)类型的 RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。
应用: 可以用来查看数据是否倾斜
scala> val rdd1 = sc.parallelize(Array(("a", 10), ("a", 20), ("b", 100), ("c", 200)))
scala> rdd1.countByKey()
res19: scala.collection.Map[String,Long] = Map(b -> 1, a -> 2, c -> 1)
13、foreach(func)
作用: 针对 RDD 中的每个元素都执行一次func
每个函数是在 Executor 上执行的, 不是在 driver 端执行的.
Spark-Core RDD行动算子的更多相关文章
- Spark Core知识点复习-1
Day1111 Spark任务调度 Spark几个重要组件 Spark Core RDD的概念和特性 生成RDD的两种类型 RDD算子的两种类型 算子练习 分区 RDD的依赖关系 DAG:有向无环图 ...
- Spark Core (一) 什么是RDD的Transformation和Action以及Dependency(转载)
1. Spark的RDD RDD(Resilient Distributed Datasets),弹性分布式数据集,是对分布式数据集的一种抽象. RDD所具备5个主要特性: 一组分区列表 计算每一个数 ...
- Spark学习之路(四)—— RDD常用算子详解
一.Transformation spark常用的Transformation算子如下表: Transformation算子 Meaning(含义) map(func) 对原RDD中每个元素运用 fu ...
- Spark 系列(四)—— RDD常用算子详解
一.Transformation spark 常用的 Transformation 算子如下表: Transformation 算子 Meaning(含义) map(func) 对原 RDD 中每个元 ...
- 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...
- 【Spark】RDD操作具体解释2——值型Transformation算子
处理数据类型为Value型的Transformation算子能够依据RDD变换算子的输入分区与输出分区关系分为下面几种类型: 1)输入分区与输出分区一对一型 2)输入分区与输出分区多对一型 3)输入分 ...
- Spark Streaming揭秘 Day35 Spark core思考
Spark Streaming揭秘 Day35 Spark core思考 Spark上的子框架,都是后来加上去的.都是在Spark core上完成的,所有框架一切的实现最终还是由Spark core来 ...
- Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...
- 【Spark-core学习之二】 RDD和算子
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...
- [转]Spark学习之路 (三)Spark之RDD
Spark学习之路 (三)Spark之RDD https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...
随机推荐
- POJ-1904-King‘s Quest
链接: https://vjudge.net/problem/POJ-1904 题意: Once upon a time there lived a king and he had N sons. A ...
- POJ-3020-Antena Placement(最小路径覆盖)
链接: https://vjudge.net/problem/POJ-3020 题意: The Global Aerial Research Centre has been allotted the ...
- pt-archiver使用记录
pt-archiver使用记录 功能:将MySQL表中的行存档到另一个表或文件中用法:pt-archiver [OPTIONS] --source DSN --where WHERE ; trunca ...
- OpenQA.Selenium.Chrome Action滑动操作
//[定位] //滑块元素 var wrapper = driver.FindElement(By.XPath("/html/body/div/div[1]/div[1]/div[2]&qu ...
- 2. ClustrixDB 文件/参数说明
一.日志/data/clustrix/log/query.log 记录节点慢SQL/错误SQL/DDL 等信息,节点分开记录 Each entry in the query.log is catego ...
- 消息队列之--RocketMQ
序言 资料 https://github.com/alibaba/RocketMQ http://rocketmq.apache.org/
- JMS学习七(ActiveMQ之Topic的持久订阅)
非持久化订阅持续到它们订阅对象的生命周期.这意味着,客户端只能在订阅者活动时看到相关主题发布的消息.如果订阅者不活动,它会错过相关主题的消息.如果花费较大的开销,订阅者可以被定义为durable(持久 ...
- Spring Cloud架构教程 (一)Hystrix监控面板
下面我们基于之前的示例来结合Hystrix Dashboard实现Hystrix指标数据的可视化面板,这里我们将用到下之前实现的几个应用,包括: eureka-server:服务注册中心 eureka ...
- Oracle数据库表空间查看和更改
set linesize 200 --设置输出一行字符个数为200 1.查看表空间名称和大小(单位MB) SELECT t.tablespace_name, round(SUM(bytes / (1 ...
- Ubuntu 12.04输入密码登陆后又跳回到登录界面
先找到这个文件: /home/user/.xsession-errors 打开这个文件. 这个文件记录了系统启动的日志,从这里你就可以看到启动的时候哪里出了问题. 对于我的来说,问题出在这里: & ...