upc组队赛17 Stone Game【极小值】
Stone Game
题目链接
题目描述
Alice and Bob are always playing game! The game today is about taking out stone from the stone piles in turn.
There are n piles of stones, and the i-th pile contains A[i] stones.
As the number of stones in each pile differs from its neighbor’s, they determine to take out exactly one stone from one of them in one turn without breaking that property. Alice goes first.
The player who cannot take stone will lose the game.
Now you have to determine the winner given n numbers representing the piles, if they both play optimally.
You should notice that even a pile of 0 stone is still regarded as a pile!
输入
The first line of input file contains an integer T (1≤T≤100), describing the number of test cases.
Then there are 2×T lines, with every two lines representing a test case.
The first line of each test case contains only one integer n (1≤n≤105) as described above.
The second line of that contains exactly n numbers, representing the number of stone(s) in a pile in order.
All these numbers are ranging in [0,109].
It is guaranteed that the sum of n in all cases does not exceed 106.
输出
You should output exactly T lines.
For each test case, print Case d: (d represents the order of the test case) first, then print the name of winner, Alice or Bob .
样例输入
2
2
1 3
3
1 3 1
样例输出
Case 1: Alice
Case 2: Bob
提示
Sample 1:
There is a possible stone-taking sequence: (1,3)-> (1,2)-> (0,2)-> (0,1)
Here is an invalid sequence: (1,3)-> (1,2)-> (1,1)-> (0,1). Though it has the same result as the first sequence, it breaks that property “the number of stones in each pile differs from its neighbor’s”.
以下题意和题解来源自https://blog.csdn.net/winter2121/article/details/89763995
题意
n堆石子,保证相邻两堆不等。A和B玩游戏,轮流从这n堆中,任意拿走一颗石子,但需要保证拿走第i堆的一颗石子后,第i堆的石子不能和他相邻堆相等。谁无法拿石子时,谁就输。问谁能赢?
题解
设a[x]与a[y]相邻,若a[x]>a[y],则永远不会出现a[x]<=a[y]的情况。于是整个序列的单调性不会发生变化。
找出所有的极小值点(两端特判),这些点最后一定能拿成0。然后从极小值点往两边爬,爬到封顶,爬的时候让a[i]变成前一个+1即可。也就是保持单调性的前提下,尽量降低序列的值。 令sum = 原序列的和 - 现序列的和,则sum为奇数时A赢,否则B赢
原博主的题解写的很好,我在原博主的基础上精简了部分代码,增添了些注释方便理解
代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;i++)
#define scac(x) scanf("%c",&x)
#define sca(x) scanf("%d",&x)
#define sca2(x,y) scanf("%d%d",&x,&y)
#define sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define scl(x) scanf("%lld",&x)
#define scl2(x,y) scanf("%lld%lld",&x,&y)
#define scl3(x,y,z) scanf("%lld%lld%lld",&x,&y,&z)
#define pri(x) printf("%d\n",x)
#define pri2(x,y) printf("%d %d\n",x,y)
#define pri3(x,y,z) printf("%d %d %d\n",x,y,z)
#define prl(x) printf("%lld\n",x)
#define prl2(x,y) printf("%lld %lld\n",x,y)
#define prl3(x,y,z) printf("%lld %lld %lld\n",x,y,z)
#define mst(x,y) memset(x,y,sizeof(x))
#define ll long long
#define LL long long
#define pb push_back
#define mp make_pair
#define P pair<double,double>
#define PLL pair<ll,ll>
#define PI acos(1.0)
#define eps 1e-6
#define inf 1e17
#define mod 1e9+7
#define INF 0x3f3f3f3f
#define N 1005
const int maxn = 1e6+10;
int a[maxn],b[maxn];
int t,n;
int kase = 0;
int main()
{
sca(t);
while(t--)
{
sca(n);
ll sum = 0;
rep(i,1,n+1)
{
sca(a[i]);
sum+=a[i];
}
printf("Case %d: ",++kase);
if(n == 1) //如果只有一个数
{
puts(sum % 2 ? "Alice" : "Bob");
continue;
}
int cnt = 0;
a[0]= a[n+1] = -1; //方便下面操作
//先处理单调的两端,这样后面从中间开始的操作才是正确的
for(int i = 1;i < n && a[i]<a[i+1]; i++) a[i] = a[i-1] + 1;
for(int i = n;i > 1 && a[i]<a[i-1]; i--) a[i] = a[i+1] + 1;
rep(i,2,n)
{
if(a[i] <a[i-1] && a[i]<a[i+1])//位于中间的极小值
{
a[i] = 0; //直接把他变0;
for(int j = i-1; j > 1 && a[j] < a[j-1]; j--) //如果保持单调
a[j] = a[j+1] + 1;
for(int j = i+1; j < n && a[j] < a[j+1]; j++)
a[j] = a[j-1] + 1;
}
}
rep(i,1,n+1)
{ //因为在上面的操作中我们没有处理头和尾,所以在这里处理
if(i == 1 && a[1] > a[2]) a[1] = a[2] + 1;
else if(i == n && a[n] > a[n-1]) a[n] = a[n-1]+1;
else if(a[i] > a[i-1] && a[i] > a[i+1])
a[i] = max(a[i-1],a[i+1])+1; //如果比旁边两个都大,那只能减到大者+1的数
}
rep(i,1,n+1)
{
sum-=a[i];//操作次数 = 原序列-操作后序列
//printf("%d ",a[i]);
}
//puts("");
//prl(sum);
puts(sum % 2 ? "Alice" : "Bob");
}
return 0;
}
upc组队赛17 Stone Game【极小值】的更多相关文章
- upc组队赛17 Greatest Common Divisor【gcd+最小质因数】
Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...
- upc组队赛17 Bits Reverse【暴力枚举】
Bits Reverse 题目链接 题目描述 Now given two integers x and y, you can reverse every consecutive three bits ...
- upc组队赛16 GCDLCM 【Pollard_Rho大数质因数分解】
GCDLCM 题目链接 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some int ...
- upc组队赛15 Supreme Number【打表】
Supreme Number 题目链接 题目描述 A prime number (or a prime) is a natural number greater than 1 that cannot ...
- upc组队赛3 Congestion Charging Zon【模拟】
Congestion Charging Zon 题目描述 Tehran municipality has set up a new charging method for the Congestion ...
- upc组队赛3 Chaarshanbegaan at Cafebazaar
Chaarshanbegaan at Cafebazaar 题目链接 http://icpc.upc.edu.cn/problem.php?cid=1618&pid=1 题目描述 Chaars ...
- upc组队赛1 过分的谜题【找规律】
过分的谜题 题目描述 2060年是云南中医学院的百年校庆,于是学生会的同学们搞了一个连续猜谜活动:共有10个谜题,现在告诉所有人第一个谜题,每个谜题的答案就是下一个谜题的线索....成功破解最后一个谜 ...
- upc组队赛1 不存在的泳池【GCD】
不存在的泳池 题目描述 小w是云南中医学院的同学,有一天他看到了学校的百度百科介绍: 截止到2014年5月,云南中医学院图书馆纸本藏书74.8457万册,纸质期刊388种,馆藏线装古籍图书1.8万册, ...
- upc组队赛1 黑暗意志【stl-map】
黑暗意志 题目描述 在数千年前潘达利亚从卡利姆多分离之时,迷雾笼罩着这块新形成的大陆,使它不被外来者发现.迷雾同样遮蔽着这片大陆古老邪恶的要塞--雷神的雷电王座.在雷神统治时期,他的要塞就是雷电之王力 ...
随机推荐
- python字符串的运算有哪些
python字符串的运算有哪些 1,链接符号 + 2,判断字符串是否在某个字符串中 ‘s’ in ‘this’ 返回bool 3,字符串索引 a="this a my" a[0], ...
- P3379 【模板】最近公共祖先(LCA)(欧拉序+rmq)
P3379 [模板]最近公共祖先(LCA) 用欧拉序$+rmq$维护的$lca$可以做到$O(nlogn)$预处理,$O(1)$查询 从这里剻个图 #include<iostream> # ...
- 如何将datetimepicker默认设置为空?
在Load中,初始化 this.dateTimePicker1.Format=DateTimePickerFormat.Custom; his.dateTimePicker1.CustomFormat ...
- Vue Login by Google
vue-google-oauth2 来源:https://www.npmjs.com/package/vue-google-oauth2
- Spark2.0集成Hive操作的相关配置与注意事项
前言 已完成安装Apache Hive,具体安装步骤请参照,Linux基于Hadoop2.8.0集群安装配置Hive2.1.1及基础操作 补充说明 Hive中metastore(元数据存储)的三种方式 ...
- python常用模块学习1
import time time.sleep(1)#暂停时间 time.time()#显示当前系统时间戳 t=time.localtime()#结构化当地时间,可以将结构化时间想象成一个类 print ...
- python基础--内置函数filter,reduce
movie_people=["sb+_alex","sb_wupeiqi","han"] # def filter_test(array): ...
- 动态规划—distinct-subsequences
题目: Given a string S and a string T, count the number of distinct subsequences of T in S. A subseque ...
- springboot+UEditor图片上传
springboot+UEDitor百度编辑器整合图片上记录于此 1.下载ueditor插件包,解压到static/ueditor目录下 2.在你所需实现编辑器的页面引用三个JS文件 1) uedi ...
- loadrunner 使用
loadrunner给我的感觉很强势吧,第一次接触被安装包吓到了,当时用的是win10安装11版本的,各种安装失败,印象很深刻,那时候全班二三十号人,搞环境搞了两天,后来无奈,重做系统换成win7的了 ...