【51nod1220】约数之和
题目
d(k)表示k的所有约数的和。d(6) = 1 + 2 + 3 + 6 = 12。
定义S(N) = ∑1<=i<=N ∑1<=j<=N d(i*j)。
例如:S(3) = d(1) + d(2) + d(3) + d(2) + d(4) + d(6) + d(3) + d(6) + d(9) = 59,S(1000) = 563576517282。
给出正整数N,求S(N),由于结果可能会很大,输出Mod 1000000007(10^9 + 7)的结果。
分析
分开处理每个质因子,于是\(d(i*j)=\sum_{p|i}\sum_{q|j}\dfrac{iq}{p}[gcd(p,q)=1]\)
\]
上一波反演,
\]
\]
\]
\]
考虑处理\(\sum_{q=1}^{\lfloor\frac{n}{d}\rfloor}{\dfrac{\lfloor\dfrac{n}{dp}\rfloor(\lfloor\dfrac{n}{dp}\rfloor+1)}{2}}\)
用\(n\)代替\(\lfloor\dfrac{n}{d}\rfloor\)
即
\]
\]
\]
\]
\]
于是对于两层\(\sum\)都分块处理
类似与【51nod 2026】Gcd and Lcm,可以用杜教筛处理\(\mu(d)d\)的前缀和。
对于\(\sum_{j=1}^{n}j\lfloor\dfrac{n}{j}\rfloor\),直接上分块。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const long long mo=1e9+7;
const int lim=1e5+7;
const int N=10000005;
using namespace std;
#define sqr(x) (1ll*(x)*(x)%mo)
#define val(x,y) (1ll*(y-x+1)*(x+y)/2%mo)
int p[N],mu[N],n,ha[lim+5][2],s[N],ans;
bool bz[N];
int get(int v)
{
int x;
for(x=v%lim;ha[x][0] && ha[x][0]!=v;(++x)-=x>=lim?lim:0);
return x;
}
int S(int m)
{
if(m<=N-5) return s[m];
int pos=get(m);
if(ha[pos][0]) return ha[pos][1];
ha[pos][0]=m;
int la=0,sum=0;
for(int i=2;i<=m;i=la+1)
{
la=m/(m/i);
sum=(1ll*sum+1ll*val(i,la)*S(m/i))%mo;
}
return ha[pos][1]=(1-sum+mo)%mo;
}
int main()
{
scanf("%d",&n);
mu[1]=s[1]=1;
for(int i=2;i<=N-5;i++)
{
if(!bz[i]) mu[p[++p[0]]=i]=-1;
s[i]=(s[i-1]+mu[i]*i+mo)%mo;
for(int j=1,k;j<=p[0] && (k=i*p[j])<=N-5;j++)
{
bz[k]=true;
if(i%p[j]==0) break;
mu[k]=-mu[i];
}
}
int la=1;
for(int i=1;i<=n;i=la+1)
{
la=n/(n/i);
int last=1,nn=n/i,sum=0;
for(int j=1;j<=nn;j=last+1)
{
last=nn/(nn/j);
sum=(1ll*sum+1ll*(val(j,last))*(nn/j))%mo;
}
ans=(1ll*ans+1ll*(S(la)-S(i-1)+mo)*sqr(sum))%mo;
}
printf("%d",ans);
}
【51nod1220】约数之和的更多相关文章
- 51nod1220 约数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1220 $G(n)=\sum\limits_{i=1}^n\sum\lim ...
- [51nod1220] 约数之和(杜教筛+莫比乌斯反演)
题面 传送门 题解 嗯--还是懒得写了--这里 //minamoto #include<bits/stdc++.h> #define R register #define IT map&l ...
- 51NOD 1220 约数之和 [杜教筛]
1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...
- 【动态规划】mr359-最大公约数之和
[题目大意] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入一个正整数S. 输出最大的约数之和. 样例输入 Sample Input 11 样例输出 Sample ...
- 51Nod 约数之和
1220 约数之和 题目来源: Project Euler 基准时间限制:3 秒 ...
- 约数之和(POJ1845 Sumdiv)
最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...
- [51Nod 1220] - 约数之和 (杜教筛)
题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑nj=1∑nd(ij) 题目分析 ...
- POJ1845Sumdiv题解--约数之和
题目链接 https://cn.vjudge.net/problem/POJ-1845 分析 \(POJ\)里的数学题总是这么妙啊 首先有一个结论就是\(A=\prod{ \ {p_i}^{c_i} ...
- ZZNU 正约数之和
#include<stdio.h> #include<string.h> #include<math.h> #include<time.h> #incl ...
随机推荐
- AKKA文档2.1(java版)——什么是AKKA?
可扩展的实时事务处理 我们相信编写并发.容错.可扩展的应用相当的困难.盖因大多数时候我们一直在使用错误的工具和错误的抽象等级.AKKA就是为了改变这一切的.我们利用角色模型提升了抽象等级,并且提供了一 ...
- java学习-3
输入语句Scanner的使用方法 1.导包 import java.util.Scanner 2.创建 从键盘输入:Scanner sc = new Scanner(System.in); 3.使用 ...
- PTA(Advanced Level)1031.Hello World for U
Given any string of N (≥5) characters, you are asked to form the characters into the shape of U. For ...
- PTA(Basic Level)1048.数字加密
本题要求实现一种数字加密方法.首先固定一个加密用正整数 A,对任一正整数 B,将其每 1 位数字与 A 的对应位置上的数字进行以下运算:对奇数位,对应位的数字相加后对 13 取余--这里用 J 代表 ...
- 两两内积为0(牛客多校第七场)-- CDMA
题意: 构造一个n*n的矩阵,元素只能是-1或1,任意两行内积为0(两两相乘加起来和为0). 思路: #define IOS ios_base::sync_with_stdio(0); cin.tie ...
- Django基础之模型(models)层(上)
目录 Django基础之模型(models)层 单表查询 必知必会13条 神奇的双下划线查询 多表查询 外键的字段的增删改查 表与表之间的关联查询 基于双下划线的跨表查询(连表查询) 补充知识 Dja ...
- HTTP协议 django下载安装 url路由分发
今日内容 HTTP协议 MVC和MTV框架模式 django下载安装 django的url路由分发 HTTP协议 http协议 请求信息格式 GET / HTTP/1.1 请求行 Host: 127. ...
- O024、Nova组件如何协同工作
参考https://www.cnblogs.com/CloudMan6/p/5415836.html Nova 物理部署方案 前面大家已经看到 Nova 由很多子服务组成,我们也知道OpenS ...
- 解决stackoverflow加载慢的插件
浏览stackoverflow的时候,比较慢,网上找到一个大神写的小工具 挺管用,给推荐下. gitthub地址: https://github.com/justjavac/ReplaceGoogle ...
- java 语言多线程可见性(synchronized 和 volatile 学习)
共享变量可见性实现的原理 java 语言层面支持的可见性实现方式: synchronized volatile 1. synchronized 的两条规定: 1 线程解锁前,必须把共享变量的最新值刷新 ...