BZOJ 3236: [Ahoi2013]作业(莫队+树状数组)
解题思路
莫队+树状数组。把求\([a,b]\)搞成前缀和形式,剩下的比较裸吧,用\(cnt\)记一下数字出现次数。时间复杂度\(O(msqrt(n)log(n)\),莫名其妙过了。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXM = 1000005;
const int MAXN = 100005;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,m,ans[MAXM][2],a[MAXN],f[MAXM*3],g[MAXM*3],siz,cnt[MAXM*3];
int cpy[MAXM*3],num;
struct Data{
int l,r,a,b,id;
friend bool operator<(Data A,Data B){
if(A.l/siz!=B.l/siz) return A.l<B.l;
if((A.l/siz)&1) return A.r>B.r;
return A.r<B.r;
}
}data[MAXM];
inline void add1(int x,int k){
for(;x<=n;x+=x&-x) f[x]+=k;
}
inline void add2(int x,int k){
for(;x<=n;x+=x&-x) g[x]+=k;
}
inline int query1(int x){
if(x<1) return 0;int ret=0;
for(;x;x-=x&-x) ret+=f[x];
return ret;
}
inline int query2(int x){
if(x<1) return 0;int ret=0;
for(;x;x-=x&-x) ret+=g[x];
return ret;
}
int main(){
n=rd(),m=rd();siz=sqrt(n)+1;
for(int i=1;i<=n;i++) a[i]=rd(),cpy[++num]=a[i];
for(int i=1;i<=m;i++){
data[i].l=rd(),data[i].r=rd(),data[i].a=rd();
data[i].b=rd(),data[i].id=i;cpy[++num]=data[i].a;
cpy[++num]=data[i].b;
}
sort(cpy+1,cpy+1+num);int u=unique(cpy+1,cpy+1+num)-cpy-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(cpy+1,cpy+1+u,a[i])-cpy;
for(int i=1;i<=m;i++){
data[i].a=lower_bound(cpy+1,cpy+1+u,data[i].a)-cpy;
data[i].b=lower_bound(cpy+1,cpy+1+u,data[i].b)-cpy;
}
sort(data+1,data+1+m);
int L=1,R=0,l,r;
for(int i=1;i<=m;i++){
l=data[i].l,r=data[i].r;
while(R>r) {add1(a[R],-1);if(cnt[a[R]]==1) add2(a[R],-1);cnt[a[R]]--;R--;}
while(R<r) {R++;add1(a[R],1);if(!cnt[a[R]]) add2(a[R],1);cnt[a[R]]++;}
while(L>l) {L--;add1(a[L],1);if(!cnt[a[L]]) add2(a[L],1);cnt[a[L]]++;}
while(L<l) {add1(a[L],-1);if(cnt[a[L]]==1) add2(a[L],-1);cnt[a[L]]--;L++;}
ans[data[i].id][0]=query1(data[i].b)-query1(data[i].a-1);
ans[data[i].id][1]=query2(data[i].b)-query2(data[i].a-1);
}
for(int i=1;i<=m;i++)
printf("%d %d\n",ans[i][0],ans[i][1]);
return 0;
}
BZOJ 3236: [Ahoi2013]作业(莫队+树状数组)的更多相关文章
- BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块
题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...
- COGS.1822.[AHOI2013]作业(莫队 树状数组/分块)
题目链接: COGS.BZOJ3236 Upd: 树状数组实现的是单点加 区间求和,采用值域分块可以\(O(1)\)修改\(O(sqrt(n))\)查询.同BZOJ3809. 莫队为\(O(n^{1. ...
- [AHOI2013]作业 莫队 树状数组
#include<cmath> #include<cstdio> #include<algorithm> #include<string> #inclu ...
- bzoj3236 作业 莫队+树状数组
莫队+树状数组 #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...
- BZOJ 3236 AHOI 2013 作业 莫队+树状数组
BZOJ 3236 AHOI 2013 作业 内存限制:512 MiB 时间限制:10000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目大意: 此时己是凌晨两点,刚刚做了Co ...
- BZOJ 3236: [Ahoi2013]作业( 莫队 + BIT )
莫队..用两个树状数组计算.时间复杂度应该是O(N1.5logN). 估计我是写残了...跑得很慢... ----------------------------------------------- ...
- Bzoj 3236: [Ahoi2013]作业 莫队,分块
3236: [Ahoi2013]作业 Time Limit: 100 Sec Memory Limit: 512 MBSubmit: 1113 Solved: 428[Submit][Status ...
- BZOJ 3236 莫队+树状数组
思路: 莫队+树状数组 (据说此题卡常数) yzy写了一天(偷笑) 复杂度有点儿爆炸 O(msqrt(n)logn) //By SiriusRen #include <cmath> #in ...
- bzoj 3289: Mato的文件管理 莫队+树状数组
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Mato同学 ...
随机推荐
- Python--模块之sys模块、logging模块、序列化json模块、序列化pickle模块
sys模块 sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit() sys.path 返回模块的搜索路径,初始化时使用PYTHONPA ...
- 四轴电池ADC监控学习
一.硬件原理 电池供电通过两个分压电阻接地,STM32则在两电阻中间通过ADC检测电池电压.(引脚BAT_DET) 二.ADC通道初始化 //初始化电池检测ADC //开启ADC1的通道8 //Bat ...
- 【dart学习】-- Dart之网络请求操作
Flutter的请求网络有多种方式,一种是使用dart io中的HttpClient发起的请求,一种是使用dio库,另一种是使用http库,先学一下get和post,put.delete就等后面用到在 ...
- python 网络编程:socket(二)
上节地址:Python网络编程:socket 一.send和sendall区别 send,sendall ret = send('safagsgdsegsdgew') #send 发送 ...
- [CSP-S模拟测试]:金(king)(高精度+模拟)
题目传送门(内部题36) 输入格式 第一行一个整数$T$,表示数据组数. 接下来$T$行,每行两个空格隔开的整数$n,m$. 输出格式 对于每组数据,输出一行$"Yes"$或$&q ...
- ssm项目配置多个数据源
在项目中到一些问题,一些查询模块需要链接另一个数据库,这时,就可以配置两个数据源进行操作. 1.创建jdbc.properties jdbc.url = jdbc:mysql://localhost: ...
- php函数的使用技巧
函数的使用技巧 1. do{...}while(false)的用法 作用:使用do{...}while(false)结构可以简化多级判断时代码的嵌套. 例子: 现在要实现一个功能,但需要A.B.C.D ...
- java %d %n \n
Java中,%d和%f分别用来表示输出时,替换整型输出和浮点型输出的占位符. 如: int a=28; float b = 13.0f; System.out.printf("整数是:%d% ...
- POJ3641 Pseudoprime numbers (幂取模板子)
给你两个数字p,a.如果p是素数,并且ap mod p = a,输出“yes”,否则输出“no”. 很简单的板子题.核心算法是幂取模(算法详见<算法竞赛入门经典>315页). 幂取模板子: ...
- nginx 配置反向代理和静态资源
https://unit.nginx.org/integration/ 与NGINX集成 在NGINX后面安装单元 将NGINX配置为静态Web服务器,并在Unit前面配置反向代理. NGINX直接从 ...