如果没有方案数的话,这道题水的不得了,裸的最长下降子序列。

但是它有方案数,所以...

一个是方案数的求法:

设$f[i]$是以$a[i]$结尾的最长下降子序列的长度,可以$n^2$$dp$出答案 如果$a[j]>a[i],1<=j<=i-1$,可以更新$f[i]=max(f[i],f[j]+1)$,这个额老生常谈了

设$s[i]$是以$a[i]$结尾的最长下降子序列的方案数,在更新$f[i]$的时候可以顺便更新$s[i]$:

如果$f[i]==f[j]+1$,那么$s[i]=s[j]$

如果$f[i]==f[j]$,那么$s[i]+=s[j]$

在得到最长下降子序列的长度为$len$之后,把所有$f[i]==len$的$s[i]$全部加起来,就是总的方案数。

但是,由于定义的是$s[i]$是以$a[i]$结尾的最长下降子序列的方案数,最长下降子序列的信息已经丢失,极有可能重复,比如:

3 2 1 3 2 1

后面那$3$个数的$s[]$都应该变为$0$
否则的话$1$,$2$,$3$构成了数列$321$,$1$,$2$,$6$也构成了数列$321$,计算方案数就重复了。

所以在两个位置$f[]$和$s[]$都相等的时候,就把那个位置置为$0$

这么做的话,那么这种情况会不会出锅呢:

6 5 4 6 5 3

是不会的,因为把后一个$5$的方案数置为$0$之后,$3$还可以从前一个$5$转移过来,如果让$3$从两个地方都累加上了答案,那才会出锅。

还有就是方案数会爆$long$ $long$,$_int128$也爆了,所以要用高精度。我直接用了封装成结构体的形式:

https://www.cnblogs.com/lyttt/p/11805335.html

(详见博客)

 //nice
/*
ID: Starry21
LANG: C++
TASK: buylow
*/
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring>
#include<climits>
using namespace std;
#define N 5005
#define ML 505//MaxLenth
#define ll long long
#define INF 0x3f3f3f3f
struct BT//BigInt
{
int a[ML],len;
BT()//初始化
{
memset(a,,sizeof(a));
len=;
}
void Init()
{
a[]=;
}
BT operator + (const BT &A)const
{
BT B;
B.len=max(len,A.len);
for(int i=;i<B.len;i++)
{
B.a[i]+=A.a[i]+a[i];
if(B.a[i]>=)
{//进位 9+9=18 进位不会超过10
B.a[i]-=;
B.a[i+]++;
}
}
if(B.a[B.len])//进到了下一位
B.len++;
return B;
}
void read()
{
char d[ML];
scanf("%s",d);
int l=strlen(d);
for(int i=;i<l;i++)
a[i]=d[l-i-]-'';
len=l;
}
void write()
{
for(int i=len-;i>=;i--)
printf("%d",a[i]);
}
};
ll rd()
{
ll f=1ll,x=;char c=getchar();
while(c<''||c>''){if(c=='-') f=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+(c^);c=getchar();}
return f*x;
}
int n;
ll a[N];
int f[N];
BT s[N];
int main()
{
//freopen("buylow.in","r",stdin);
//freopen("buylow.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)
a[i]=rd();
/*
后面统计答案,是f[i]==max_long的s[i]全部加起来
如果出现重复的 那个地方的s[]应该为0
3 2 1 3 2 1
后面那3个数的s[]都应该为0
如果一来就赋了初值1 答案就会错
*/
s[].Init(),a[]=LONG_MAX;
for(int i=;i<=n;i++)
{
for(int j=i-;j>=;j--)
if(a[j]>a[i])
f[i]=max(f[i],f[j]+);
for(int j=i-;j>=;j--)
{//记录方案数
if(a[j]>a[i]&&f[i]==f[j]+) s[i]=s[i]+s[j];
if(a[i]==a[j]&&f[i]==f[j]) break;
/*
防止重复
3 2 1 3 2 1
3 2 1是本质相同的序列
是为了防止第6个数向第2个数转移的情况
*/
}
}
ll t1=;BT t2;
for(int i=;i<=n;i++)
{
if(f[i]>t1)
t1=f[i],t2=s[i];
else if(f[i]==t1) t2=t2+s[i];
}
printf("%lld ",t1);
t2.write();
puts("");
return ;
}

Code

USACO4.3 Buy Low, Buy Lower【简单dp·高精度】的更多相关文章

  1. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  2. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  3. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  4. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  5. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  6. Buy Low, Buy Lower

    Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...

  7. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  8. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  9. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

随机推荐

  1. django-视图层与模板层

    1.视图层 小白必会三板斧 1.HttpResponse return HttpResponse(‘字符串’) 2.render return render(request,‘HTML页面’ ,{‘n ...

  2. 简单使用logback日志框架

    logback_config.xml 配置文件信息 <?xml version="1.0" encoding="UTF-8"?> <confi ...

  3. maven在eclipse运行命令和calss文件没有更新的问题

    使用Eclipse Maven插件[Run As]-[Maven build]时并未为其指定goal或phase 解决方法:  1.使用Eclipse Maven插件[Run As]-[Maven b ...

  4. SQL Server判断表中某字段是否存在【转】

    --比如说要判断表A中的字段C是否存在两个方法: 一, IF EXISTS ( FROM SYSOBJECTS T1 INNER JOIN SYSCOLUMNS T2 ON T1.ID=T2.ID W ...

  5. os.system 的坑,'C:\Program' 不是内部或外部命令,也不是可运行的程序 或批处理文件

    首先对os.system()是执行一些系统命令,参数是以字符串的形式进行传递,如果有多个参数时,用空格隔开 例子1:cd 和 D:用空格间隔开来,代表两个参数 但一些情况空格只是字符串里面组成部分,不 ...

  6. QT:QSS字体设置

    css,qss font-family常用的黑体宋体等字体中英文对照 当qss使用中文设置字体时,无法生效.因为qss不支持中文设置字体,所以下面给出一些常用的黑体宋体字体中英文对照. 微软雅黑: M ...

  7. JS如何设置和获取盒模型对应的宽和高

    ㈠方式一:通过DOM节点的 style 样式获取  dom.style.width/height  只能获取使用内联样式的元素的宽和高. <!DOCTYPE html> <html ...

  8. 彩色图像--色彩空间 CMY(K)空间

    学习DIP第63天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...

  9. Python字典里的5个黑魔法

    Python里面有3大数据结构:列表,字典和集合.字典是常用的数据结构,里面有一些重要的技巧用法,我把这些都整理到一起,熟练掌握这些技巧之后,对自己的功力大有帮助. 1.字典的排序: 用万金油sort ...

  10. 拉格朗日插值法板子(dls)

    namespace polysum { ; ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D]; ll calcn(int d,ll *a,ll n ...