题目


mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边。
图的“匹配”是指这个图的一个边集,里面的边两两不存在公共端点。
匹配的大小是指该匹配有多少条边。
二分图匹配我们可以通过匈牙利算法得以在O(VE)时间复杂度内解决。
mhy12345觉得单纯的二分图匹配算法毫无难度,因此提出新的问题:
现在给你一个N个点N-1条边的连通图,希望你能够求出这个图的最大匹配以及最大匹配的数量。
两个匹配不同当且仅当存在一条边在第一个匹配中存在而在第二个匹配中不存在。

分析

设\(f_{i,0|1}\)表示,第i个节点,选了或不选的最大匹配,
设j为i的儿子,
\[f_{i,0}=\sum_jmax(f_{j,0},f_{j,1})\]
设k也是i的儿子,而j不包含k,
\[f_{i,1}=max(f_{k,0}+1+\sum max(f_{j,0},f_{j,1}))\ 将k与i匹配,剩下的取最大\]
接着考虑最大匹配数量,即方案数,
设\(g_{i,0|1}\)对于f这个状态最大匹配的方案数
设\[rec_{j}=\left\{\begin{array}\\g_{j,0}\ (f_{j,0}>f_{j,1})\\g_{j,1}\ (f_{j,0}<f_{j,1})\\g_{j,0}+g_{j,1}\ (f_{j,0}=f_{j,1})\end{array}\right.\]
\[g_{i,0}=\Pi rec_j\]
设k也是i的儿子,而j不包含k,并且\(f_{k,0}+1+\sum max(f_{j,0},f_{j,1})\)为最大值(或之一)
\[g_{i,1}=\sum(g_{k,0}·\Pi rec_j)\]
这个可以用逆元或者前缀积后缀积来处理。
发现其实\(f_{j,0}<=f_{j,1}\),
所以\(max(f_{j,0},f_{j,1})=f_{j,1}\)

```#include

include

include

include

include

include

include

const long long maxlongint=2147483647;
const long long mo=1000000007;
const long long N=100005;
using namespace std;
long long n,ans,t,p,rec[N],next[N*2],last[N*2],to[N*2],tot,f[N][2],g[N][2];
int bj(long long x,long long y)
{
next[++tot]=last[x];
last[x]=tot;
to[tot]=y;
}
long long mi(long long x,long long y)
{
long long sum=1;
while(y)
{
if(y&1) sum=sumx%mo;
x=x
x%mo;
y/=2;
}
return sum;
}
int dg(long long x,long long fa)
{
g[x][0]=g[x][1]=1;
f[x][0]=f[x][1]=rec[x]=0;
long long sumf=0,mir=1,q=1;
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa)
{
dg(j,x);
sumf+=f[j][1];
f[x][0]+=f[j][1];
g[x][0]=g[x][0]rec[j]%mo;
mir=mir
rec[j]%mo;
q=false;
}
}
if(q) g[x][1]=0;
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa)
{
if(f[x][1]<f[j][0]+1+sumf-f[j][1])
{
f[x][1]=f[j][0]+1+sumf-f[j][1];
g[x][1]=mirmi(rec[j],mo-2)%mog[j][0]%mo;
}
else
if(f[x][1]==f[j][0]+1+sumf-f[j][1])
{
g[x][1]=(g[x][1]+mirmi(rec[j],mo-2)%mog[j][0]%mo)%mo;
}
}
}
if(f[x][0]>f[x][1]) rec[x]=g[x][0];
else
if(f[x][0]<f[x][1]) rec[x]=g[x][1];
else rec[x]=g[x][0]+g[x][1];
}
int main()
{
scanf("%lld%lld",&t,&p);
while(t--)
{
tot=0;
memset(last,0,sizeof(last));
memset(next,0,sizeof(next));
scanf("%lld",&n);
for(long long i=1;i<=n-1;i++)
{
long long x,y;
scanf("%lld%lld",&x,&y);
bj(x,y);
bj(y,x);
}
dg(1,0);
printf("%lld ",max(f[1][0],f[1][1]));
if(p==2) printf("%lld",rec[1]%mo);
cout<<endl;
}
}

```

【NOIP2016提高A组集训第13场11.11】最大匹配的更多相关文章

  1. 【JZOJ4887】【NOIP2016提高A组集训第13场11.11】最大匹配

    题目描述 mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边. 图的"匹配"是指这个图的一个边集,里面的边两两不存 ...

  2. 【JZOJ4886】【NOIP2016提高A组集训第13场11.11】字符串

    题目描述 某日mhy12345在教同学们写helloworld,要求同学们用程序输出一个给定长度的字符串,然而发现有些人输出了一些"危险"的东西,所以mhy12345想知道对于任意 ...

  3. JZOJ 【NOIP2016提高A组集训第16场11.15】兔子

    JZOJ [NOIP2016提高A组集训第16场11.15]兔子 题目 Description 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3 ...

  4. JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线

    JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...

  5. 【JZOJ4824】【NOIP2016提高A组集训第1场10.29】配对游戏

    题目描述 流行的跳棋游戏是在一个有m*n个方格的长方形棋盘上玩的.棋盘起初全部被动物或障碍物占满了.在一个方格中,'X'表示一个障碍物,一个'0'-'9'的个位数字表示一个不同种类的动物,相同的个位数 ...

  6. 【NOIP2016提高A组集训第4场11.1】平衡的子集

    题目 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 分析 如果暴力枚举每个人被分到哪 ...

  7. 【JZOJ4841】【NOIP2016提高A组集训第4场11.1】平衡的子集

    题目描述 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 数据范围 40%的数据满足: ...

  8. 【JZOJ4833】【NOIP2016提高A组集训第3场10.31】Mahjong

    题目描述 解法 搜索. 代码 #include<stdio.h> #include<iostream> #include<string.h> #include< ...

  9. 【NOIP2016提高A组集训第14场11.12】随机游走

    题目 YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己是不 ...

随机推荐

  1. python学习之那些由print引起的困惑

    该文索所起之因:在练习列表的操作时,要输出一波操作后的列表,但是一直让本人耿耿于怀的时下边的这个现象: 红色框框里是字符串,黄色框框里是列表,同样是只对一个元素进行的操作,为啥输出时字符串是作为一个整 ...

  2. LeetCode.953-验证外语字典顺序(Verifying an Alien Dictionary)

    这是悦乐书的第364次更新,第392篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第226题(顺位题号是953).在外语中,令人惊讶的是,他们也使用英文小写字母,但可能使 ...

  3. Centos7的引导顺序

    1.UEFI或BIOS初始化,运行POST开机自检(Power   On  Self   Test) 2.选择启动设备 3.引导装载程序grub2 4.加载装载程序的配置文件:/etc/grub.d/ ...

  4. ios系统App Store安装包下载链接获取

    今天将自己开发的Android版本和ios版本的安装包通过生成二维码的方式展示在H5页面上,Android版的比较简单,但是ios的安装包用户必须从App Store(苹果应用市场)中下载安装,所以获 ...

  5. AJAX得基本使用

    直接上案例:

  6. javascript number与isNan

    number 与 isnan Number:表示整数和浮点数 NaN:即非数值(not a Number)是 一个特殊的数值.是Number类型的一种. 说明:1.任何涉及NaN的操作(例如Nan/1 ...

  7. CMD 显示当前时间和日期

    1. 其实还是应该多看 help  要知道 help 比百度还用一百倍 除了 可能东西比较多 C:\Users\Administrator>date /? 显示或设置日期. DATE [/T | ...

  8. 洛谷 P1194 飞扬的小鸟 题解

    题面 这道题是一道隐藏的比较深的DP(我太蒟蒻了!) 设f[i][j]表示到第i列时高度为j的最少步数是多少: 求上升时的方案就是一个完全背包!,求下降时的方案就是一个01背包: 然后处理边界就能A掉 ...

  9. 洛谷 P5150 生日礼物 题解

    题面 因为 n=lcm(a,b)n = lcm(a, b)n=lcm(a,b) ,可以得出: a  和 b  的质因数都是 n 的质因数 对于 n  的每个质因数 x ,在 n 中的次数为 y ,那么 ...

  10. reload() 方法用于重新加载当前文档。配合Ajax异步请求。

    1. reload() 方法, reload() 方法用于重新加载当前文档.配合Ajax异步请求. http://www.w3school.com.cn/jsref/met_loc_reload.as ...