ZROI 19.08.08模拟赛
写在前面:为了保护正睿题目版权,这里不放题面,只写题解。
首先恭喜swk今天翻车!
“小心大样例演你。”——天祺鸽鸽
果然swk今天被大样例演死了,天祺鸽鸽诚不欺我!
- A
这题标程是前几天ACM赛的双栈背包……
然而可以排序之后直接背包,\(O(nm)\)随便过(
- B
菜 swk 菜
发现答案就是子串中最长border,即串长减去最短循环节。
每个字母是独立的,可以分开计算答案。
对第\(i\)个字母,设循环节循环次数为\(k\),在循环节内的长度为\(f_i\),剩余的长度为\(g_i\),则存在\(f_i\cdot k+g_i=c_i\),此时\(i\)对答案的贡献为\(f_i (k-1)+\min(f_i,g_i)\)。
\(40pts:\)
有一个假做法在\(n=2\)时是对的,但是陈主力也不知道为什么。
考虑枚举\(k\)。直觉想到可以贪心地令\(f_i\)最大,即\(f_i=\lfloor\frac{c_i}k\rfloor\)。
然而在\(n>2\)时就会出锅。
反例大概是\(k\leq 3\)时,贪心的使\(f_i\)最长,会因为第一个循环节被剪掉导致答案变小。
\(70pts:\)
仍然要枚举\(k\),但是需要确定\(f_i\)的最优取值。
分两种情况讨论:\(f_i< g_i\)和\(f_i\geq g_i\)。
第一种情况,\(ans=f_i\cdot k\),即\(f_i<g_i\)时,\(f_i\)越大越优。
此时有\(f_i<g_i=c_i-f_i\cdot k\),移项得\(f_i\cdot (k+1)<c_i\),即\(f_i=\lfloor\frac{c_i}{k+1}\rfloor\)时最优。
第二种情况,\(ans=f_i\cdot (k-1)+g_i\)。
考虑在保持\(f_i\geq g_i\)的情况下,令\(f'_i=f_i-1\),则\(g'_i=c_i-f'_i\cdot k=c_i-(f_i-1)\cdot k=g_i+k\),代入上式得\(ans'=(f_i-1)\cdot (k-1)+g_i+k=f_i\cdot (k-1)+g_i+1=ans+1\)。
我们惊喜地发现,使\(f_i\)减小之后,\(ans\)增大了。即\(f_i\geq g_i\)时,\(f_i\)越小越优。
此时有\(f_i\cdot(k+1)\geq c_i\),即\(f_i=\lceil\frac{c_i}{k+1}\rceil\)时最优。
枚举\(k\),对每个\(k\)取两个值计算。复杂度\(O(\max(c_i)\cdot n)\)。
\(100pts:\)
发现对于每个有若干互不相交的\([l_i,r_i]\),使得对于任意\(k_i\in [l_i,r_i],j\in [1,n]\),\(\lfloor\frac{c_j}{k_i+1}\rfloor,\lceil\frac{c_j}{k_i+1}\rceil\)的值是相等的。
这启发我们使用整除分块,对每个区间只算一次。由某些数论知识可知,这样的区间最多只有\(O(\sum\sqrt {c_i})\)个。时间复杂度\(O(n\cdot\sum\sqrt{c_i})\)。
- C
\(10pts:\)
取反、左移、右移。
\(25pts:\)
位运算实现a+b:xor,and,左移\(1\)位,递归即可。
\(40pts:\)
把每一位取出来之后直接加,最多迭代\(6\)次即可。
\(65pts:\)
发现将\(x\) xor \(y\)的最高位提取出来就可以解决。
设\(x\) xor \(y=a\) ,对于\(i\in [1,\log_2 64)\),执行\(a |=(a>>2^i)\)。
如此操作后,\(a\)的最高位以下的位全都赋为了\(1\)。xor一下就好了。
\(80pts:\)
做法类似上个子任务,方向反过来即可。需要卡一卡常数。
\(100pts:\)
发现需要实现\(\min(x,y)\)。
\(\min(x,y)=[x<y]\cdot x+[x\geq y]\cdot y\),发现需要实现一个数乘以\(0/1\)。等价于and上 \(0/2^{64}-1\),用子任务\(4\)的方式解决即可。
ZROI 19.08.08模拟赛的更多相关文章
- ZROI 19.08.07模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "正睿从来没有保证,模拟赛的题目必须原创." "文案不是我写的,有问题找喵老师去."--蔡老师 ...
- ZROI 19.08.09模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(70pts:\) 维护一个栈,从一侧向另一侧扫描,如果新加入的元素与当前栈顶相同,则出栈,否则进栈.显然一个子串是括号序列,当 ...
- ZROI 19.08.06模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 今天正睿又倒闭了,从删库到跑路. 天祺鸽鸽txdy! A "不要像个小学生一样一分钟就上来问东西."--蔡老板 虽 ...
- ZROI 19.08.12模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) ...
- ZROI 19.08.11模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. dlstql,wsl A \(10pts:\) \(a=100,T=100\),对每个排列构造一个反的,一步到位即可. \(20pts ...
- ZROI 19.08.10模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操 ...
- ZROI 19.08.05模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(21pts:\) 随便枚举,随便爆搜就好了. \(65pts:\) 比较显然的dp,设\(f_{i,j,k}\)表示在子树\( ...
- ZROI 19.08.04模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "这应该是正睿OI历史上第一次差评破百的比赛." "这说明来正睿集训的人越来越多了." &qu ...
- 2019.08.06模拟赛T2
题目大意: 已知三个$n$位二进制数$A$,$B$,$C$. 满足: $A+B=C$ 它们二进制位中$1$的个数分别为$a$,$b$,$c$. 求满足条件的最小的$C$. Solution 唉,又是一 ...
- 「HGOI#2019.4.19省选模拟赛」赛后总结
t1-Painting 这道题目比较简单,但是我比较弱就只是写了一个链表合并和区间DP. 别人的贪心吊打我的DP,嘤嘤嘤. #include <bits/stdc++.h> #define ...
随机推荐
- Linux常用命令touch/grep/mkdir/rm/cat/find/cp/mv/tar/gzip等
Unix-->Linux(Ubuntu,Redhat,suse,fedora) 1. cd - :回到上次执行的那个目录(相当于“回看”的功能) 2. touch :创建一个文件,可以是任意后缀 ...
- 【DVWA】File Upload(文件上传漏洞)通关教程
日期:2019-08-01 17:28:33 更新: 作者:Bay0net 介绍: 0x01. 漏洞介绍 在渗透测试过程中,能够快速获取服务器权限的一个办法. 如果开发者对上传的内容过滤的不严,那么就 ...
- jdbc 对sqlite的基本操作
1.向数据库中创建表 public void addTable( String dbpath) { //创建表单的sql语句 String createtablesql= " CREATE ...
- zabbix日志报错解决
[root@bogon ldap]# cat /tmp/zabbix_server.log 9135:20181204:085433.351 using configuration file: /us ...
- node在Web中的用途
1.网站后台: user browser ——> application server(node开发的application,处理用户的所有请求和给用户的响应) 2.分发数据请求,渲染HTML: ...
- 用poi从excel文档导入数据
import org.apache.commons.lang3.StringUtils; import org.apache.poi.hssf.usermodel.HSSFWorkbook; impo ...
- Java内部类介绍
在Java中,内部类包括:成员内部类(静态内部类.非静态内部类).匿名内部类.局部内部类(几乎不用). 1.成员内部类: 1.1非静态成员内部类 public class InnerClassTest ...
- 【VS开发】动态添加的ActiveX控件如何响应事件
http://blog.csdn.net/xiaoqiqixiao/article/details/574542 今天在csdn上看到一朋友问如何响应动态添加的控件的事件,搜索资料,发现对于一般的应用 ...
- Conetos 下安装docker 和镜像加速
首先升级yum yum update 安装yum-utils,它提供yum-config-manager可以用来配置repo yum install -y yum-utils 使用以下命令设置稳定版 ...
- [转帖]达梦数据库(DM6)和ORACLE 10g的异同点
达梦数据库(DM6)和ORACLE 10g的异同点 https://bbs.aliyun.com/detail/351337.html 花花浪子 级别: 小白 发帖 0 云币 -41 加关注 ...