洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 【模板】多项式乘法(FFT)
题意
给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) 的卷积。
思路
FFT
又是一道 \(FFT\) 的模板题,不过用递归的 \(FFT\) 会超时。
代码
#include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1);
typedef complex<double> Complex;
const int maxn = 3e6 + 10;
Complex a[maxn], b[maxn];
int m, n;
int bit = 2, rev[maxn];
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
void get_rev(){
while(bit <= n + m) bit <<= 1;
for(int i = 0; i < bit; ++i) {
rev[i] = (rev[i >> 1] >> 1) | (bit >> 1) * (i & 1);
}
}
void FFT(Complex *a, int op) {
for(int i = 0; i < bit; ++i) {
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int mid = 1; mid < bit; mid <<= 1) { // 左右两部分的区间长度
Complex wn = Complex(cos(PI / mid), op * sin(PI / mid)); // 单位复数根
for(int j = 0; j < bit; j += mid<<1) { // 一组一组处理
Complex w(1, 0);
for(int k = 0; k < mid; ++k, w = w * wn) {
Complex x = a[j + k], y = w * a[j + k + mid]; // 蝴蝶操作
a[j + k] = x + y, a[j + k + mid] = x - y;
}
}
}
}
int main() {
n = read(), m = read();
for(int i = 0; i <= n; ++i) {
a[i] = read();
}
for(int i = 0; i <= m; ++i) {
b[i] = read();
}
get_rev();
FFT(a, 1);
FFT(b, 1);
for(int i = 0; i <= bit; ++i) {
a[i] *= b[i];
}
FFT(a, -1);
for(int i = 0; i <= n + m; ++i) {
printf("%d ", (int)(a[i].real() / bit + 0.5));
}
printf("\n");
return 0;
}
洛谷 P3803 【模板】多项式乘法(FFT)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷p3803 FFT入门
洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
随机推荐
- KEIL Code RO-data RW-data ZI-data 【转】
来自:http://jinyong314.blog.163.com/blog/static/30165742201052225415901/ 字节 8位半字 16位字 32位 Code, RO-d ...
- PAT 1051 Pop Sequence (25 分)
返回 1051 Pop Sequence (25 分) Given a stack which can keep M numbers at most. Push N numbers in the ...
- gradle 排除jar
排除fastjson的包,其他同理compile('com.qq.sdk:core:2.0.3') { exclude group: 'com.alibaba'}
- HTML5: HTML5 语义元素
ylbtech-HTML5: HTML5 语义元素 1.返回顶部 1. HTML5 语义元素 语义= 意义 语义元素 = 有意义的元素 什么是语义元素? 一个语义元素能够清楚的描述其意义给浏览器和开发 ...
- 关于jsp:include 动态引入的值传递问题(数据共享问题)
<jsp:include page="search.jsp" flush="true"> <jsp:param name="gh&q ...
- 编译Android系统源码和内核源码
[日期:2016-01-11] 来源:Linux社区 作者:jiangwei [字体:大 中 小] 把我之前编译Android系统源码和内核源码的过程记录一下,因为这个过程真的是受益匪浅,看 ...
- idea Maven 一键 mvn clean package
文章目录 方法一 方法二 方法一 方法二
- Gym 102021D : Down the Pyramid(思维)
Do you like number pyramids? Given a number sequence that represents the base, you are usually suppo ...
- 2019牛客多校第⑨场E All men are brothers(并查集+组合数学)
原题:https://ac.nowcoder.com/acm/contest/889/E 思路: 做并查集,维护每个集合大小,初始化操作前的总方案数,每次合并两个集合时减少的数量=合并的两个集合大小相 ...
- vue-cesium中经纬度写反了,报错
vue-cesium中经纬度写反了,报错 [Vue warn]: Invalid prop: custom validator check failed for prop "position ...