题目链接:P3803 【模板】多项式乘法(FFT)

题意

给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) 的卷积。

思路

FFT

又是一道 \(FFT\) 的模板题,不过用递归的 \(FFT\) 会超时。

代码

#include <bits/stdc++.h>
using namespace std; const double PI = acos(-1);
typedef complex<double> Complex;
const int maxn = 3e6 + 10; Complex a[maxn], b[maxn];
int m, n;
int bit = 2, rev[maxn]; inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
} void get_rev(){
while(bit <= n + m) bit <<= 1;
for(int i = 0; i < bit; ++i) {
rev[i] = (rev[i >> 1] >> 1) | (bit >> 1) * (i & 1);
}
} void FFT(Complex *a, int op) {
for(int i = 0; i < bit; ++i) {
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int mid = 1; mid < bit; mid <<= 1) { // 左右两部分的区间长度
Complex wn = Complex(cos(PI / mid), op * sin(PI / mid)); // 单位复数根
for(int j = 0; j < bit; j += mid<<1) { // 一组一组处理
Complex w(1, 0);
for(int k = 0; k < mid; ++k, w = w * wn) {
Complex x = a[j + k], y = w * a[j + k + mid]; // 蝴蝶操作
a[j + k] = x + y, a[j + k + mid] = x - y;
}
}
}
} int main() {
n = read(), m = read();
for(int i = 0; i <= n; ++i) {
a[i] = read();
}
for(int i = 0; i <= m; ++i) {
b[i] = read();
}
get_rev();
FFT(a, 1);
FFT(b, 1);
for(int i = 0; i <= bit; ++i) {
a[i] *= b[i];
}
FFT(a, -1);
for(int i = 0; i <= n + m; ++i) {
printf("%d ", (int)(a[i].real() / bit + 0.5));
}
printf("\n");
return 0;
}

洛谷 P3803 【模板】多项式乘法(FFT)的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  3. P3803 [模板] 多项式乘法 (FFT)

    Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...

  4. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  5. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  6. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  7. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  8. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  9. 洛谷p3803 FFT入门

    洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...

  10. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

随机推荐

  1. python 找到列表中满足某些条件的元素

    a = [0, 1, 2, 3, 4, 0, 2, 3, 6, 7, 5] selected = [x for x in a if x in range(1, 5)]   # 找到a中属于[1,5)中 ...

  2. kafka ConsumerConfig 配置

  3. 未来-YLB-二手市场:二手市场

    ylbtech-未来-YLB-二手市场:二手市场 1.返回顶部 1. 二手市场是人们将闲置不用的物品集中起来进行交换.交易的场所.在二手市场中买卖二手物品,价格低廉.二手交易市场又称跳蚤市场.   中 ...

  4. z-index只能用在定位元素上

    弄了很久才突然想到z-index只能用在被定位的元素上. 定位的时候要注意给父级定位 在ie7里有问题的部分

  5. Centos6下实现Nginx+Tomcat实现负载均衡及监控

    在性能测试过程中,我们可能会关注很多指标,比如CPU.IO.网络.磁盘等,通过这些指标大致可以判断哪个环节遇到了性能瓶颈,但是当这些指标无法判断出性能瓶颈时,我们可能就需要对一些中间件进行监控,比如N ...

  6. MHA+atlas(数据库的高可用与读写分离)

    学习完了mycat的高可用还是复习一下MHA+atlas吧,个人感觉还是比mycat好用,毕竟MHA有数据补全和切换主从的机制 1 MHA是什么? MHA(Master High Availabili ...

  7. Python第五节 元组

    Python第八节 元组补充 元组从形式上看,和列表唯一不同的在于,列表是中括号,元组是小括号 元组内的元素不可更改 一. 创建 创建直接在小括号内写元素,用逗号隔开就好 创建空元祖只写一个小括号 元 ...

  8. python获取网页源代码

    最简单的网页取源(不用模拟浏览器的情况) import requests def getHTML(url): try: r = requests.get(url,timeout=30) r.raise ...

  9. vue组件 is ref

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. Linux 临时和永久关闭 Selinux

    查看当前 Selinux 状态:getenforce 临时关闭 Selinux:setenforce 0 永久关闭 Selinux: vim /etc/sysconfig/selinux 将 SELI ...