[BZOJ 1013] [JSOI2008]球形空间产生器

题面

给出一个n维球体上的n+1个点,求球心坐标

分析

设球心坐标为\((x_1,x_2,\dots x_n)\),由于一个球体上的所有点到球心距离相等。那么

第\(i\)个方程为$$ \begin{equation} \sum_{j=0}^n (a_{i,j}-x_j)2=C2 \tag{i} \end{equation}$$

其中\(C\)为距离,\(a_{i,j}\)为点的坐标.我们对相邻两个方程做差,消去\(x_j^2\)和\(C\). \((i)-(i+1)\)得

\[\begin{aligned}\sum_{j=1}^n (a_{i,j}^2-a_{i+1,j}^2-2x_j(a_{i,j}-a_{i+1,j})) =0 \\\sum_{j=1}^n 2(a_{i,j}-a_{i+1,j})x_j =\sum_{j=1}^n (a_{i,j}^2-a_{i+1,j}^2)\end{aligned}
\]

直接高斯消元即可.

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 10
using namespace std;
int n;
double a[maxn+5][maxn+5];
double mat[maxn+5][maxn+5];
void gauss(int n,int m){
for(int i=1;i<=n;i++){
int id=i;
for(int j=i+1;j<=n;j++){
if(mat[j][i]>mat[id][i]) id=j;
}
for(int k=1;k<=m;k++) swap(mat[i][k],mat[id][k]);
for(int j=1;j<=n;j++){
if(j==i) continue;
double r=mat[j][i]/mat[i][i];
for(int k=1;k<=m;k++) mat[j][k]-=mat[i][k]*r;
}
}
for(int i=1;i<=n;i++){
mat[i][m]/=mat[i][i];
}
} int main(){
scanf("%d",&n);
for(int i=1;i<=n+1;i++){
for(int j=1;j<=n;j++){
scanf("%lf",&a[i][j]);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
mat[i][j]=2*(a[i][j]-a[i+1][j]);
mat[i][n+1]+=a[i][j]*a[i][j]-a[i+1][j]*a[i+1][j];
}
}
gauss(n,n+1);
for(int i=1;i<=n;i++){
printf("%.3f ",mat[i][n+1]);
}
}

[BZOJ 1013] [JSOI2008]球形空间产生器的更多相关文章

  1. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  2. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  3. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  4. 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  5. BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)

    题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...

  6. bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】

    n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3) 因为圆上各点到圆心的距离相同,于是可以列出距离方程 \[ (a1-x)^2 ...

  7. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  8. 【BZOJ 1013】球形空间产生器sphere(高斯消元)

    球形空间产生器sphere HYSBZ - 1013 (高斯消元) 原题地址 题意 给出n维的球上的n个点,问原球体球心. 提示 n维球体上两点距离公式\(dist = \sqrt{ (a1-b1)^ ...

  9. 【BZOJ】1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    题目 传送门:QWQ 分析 高斯消元就是个大暴力.... 代码 #include <bits/stdc++.h> using namespace std; ; ; int n; doubl ...

随机推荐

  1. luogu 2993 [FJOI2014]最短路径树问题 Dijkstra+点分治

    挺简单的,但是给人一种把两个问题强行弄到一起的感觉. 十分不好写. Code: #include <queue> #include <cstdio> #include < ...

  2. eclipse内存溢出 参数配置

    http://blog.csdn.net/liuhenghui5201/article/details/50783444

  3. numpy.bincount()

    numpy.bincount详解 numpy.bincount(x, weights=None,minlength=0) 参数中要求x是一个array_like,一维的并且包含非负整数. In [19 ...

  4. 新建Spring boot 启动报错 Failed to auto-configure a DataSource

    今天学习springboot,使用idea创建项目.在选择组件时添加了mysq 然后在第一次启动的时候启动报错,错误信息如下: ***************************APPLICATI ...

  5. Tomcat报错,内存溢出的错误Exception in thread "http-bio-8080-exec-13" java.lang.OutOfMemoryError: PermGen space

    说是tomcat 内存溢出,然后按照网上看的搞一搞之后没出息这个问题了 原因是tomcat内存溢出,按照一到五步奏,在第三步加上那段参数.

  6. oracle存储过程及sql优化-(三)

    接下来介绍上篇接触到的存储过程中的sql语句 insert into TMP_GT3_sbfgl_WJSTJB SELECT NSR.NSRSBH, NSR.NSRMC, NSR.SCJYDZ, ca ...

  7. 一、linux下nginx1.7.8+php5.6.3的环境配置

    部分参考:http://www.cnblogs.com/simpman/p/4151662.html http://blog.zyan.cc/nginx_php_v6 1.利用linux系统自带的yu ...

  8. SpringBoot&Dubbo&Zookeeper远程调用项目搭建

    序言 Dubbo一款分布式服务框架,作为阿里巴巴SOA服务化治理方案的核心框架,通过高性能和透明化的RPC实现服务的远程调用,对服务的负载均衡以及项目的耦合性提供很强的解决方式;具体Dubbo的介绍和 ...

  9. 一、基础篇--1.1Java基础-MVC设计思想

    MVC简介: MVC(Model View Controller) 是模型(model)-视图(view)-控制器(controller)的缩写.一种软件设计典范,用一种业务逻辑.数据.界面显示分离的 ...

  10. 四十五:数据库之SQLAlchemy之subquery实现复杂查询

    子查询让多个查询变成一个查询,只需要查找一次数据库,性能相对来讲更高效,不用写多个SQL语句就可以实现一些复杂的查询,在SQLAlchemy中要实现一个子查询,应该使用以下步骤:1.将子查询按照传统方 ...