【bzoj2819】Nim
Description
著名游戏设计师vfleaking,最近迷上了Nim。普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取。谁不能取谁输。这个游戏是有必胜策略的。于是vfleaking决定写一个玩Nim游戏的平台来坑玩家。
为了设计漂亮一点的初始局面,vfleaking用以下方式来找灵感:拿出很多石子,把它们聚成一堆一堆的,对每一堆编号1,2,3,4,...n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达。然后他不停地进行如下操作:
1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家。
2.把堆v中的石子数变为k。
由于vfleaking太懒了,他懒得自己动手了。请写个程序帮帮他吧。
Input
第一行一个数n,表示有多少堆石子。
接下来的一行,第i个数表示第i堆里有多少石子。
接下来n-1行,每行两个数v,u,代表v,u间有一条边直接相连。
接下来一个数q,代表操作的个数。
接下来q行,每行开始有一个字符:
如果是Q,那么后面有两个数v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略。
如果是C,那么后面有两个数v,k,代表把堆v中的石子数变为k。
对于100%的数据:
1≤N≤500000, 1≤Q≤500000, 0≤任何时候每堆石子的个数≤32767
其中有30%的数据:
石子堆组成了一条链,这3个点会导致你DFS时爆栈(也许你不用DFS?)。其它的数据DFS目测不会爆。
注意:石子数的范围是0到INT_MAX
Output
对于每个Q,输出一行Yes或No,代表对询问的回答。
Sample Input
5
1 3 5 2 5
1 5
3 5
2 5
1 4
6
Q 1 2
Q 3 5
C 3 7
Q 1 2
Q 2 4
Q 5 3
Sample Output
No
Yes
Yes
Yes
题解:
#include<cstdio>
#include<iostream>
inline int read(){
int s=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='') s=s*+ch-,ch=getchar();
return s;
}
const int N=;
struct edges{
int v;edges *last;
}edge[N<<],*head[N];int cnt;
inline void add_edge(int u,int v){
edge[++cnt].v=v;edge[cnt].last=head[u];
head[u]=edge+cnt;
}
int a[N];
int n;
int dep[N],f[N][];
int num,l[N],r[N];
int c[N];
inline void add(int x,int w)
{
for(int i=x;i<=n;i+=i&-i)
c[i]^=w; }
inline int query(int x){
int ans=;
for(int i=x;i;i-=i&-i)
ans^=c[i];
return ans;
}
void dfs(int x)
{
l[x]=++num;
for(int i=;(<<i)<=dep[x];i++){
f[x][i]=f[f[x][i-]][i-];
}
for(edges *i=head[x];i;i=i->last){
if(f[x][]==i->v) continue ;
dep[i->v]=dep[x]+;
f[i->v][]=x;
dfs(i->v);
}
r[x]=num;
}
inline int lca(int x,int y)
{
if(dep[x]<dep[y]) std::swap(x,y);
int t=dep[x]-dep[y];
for(int i=;t;i++)
if((<<i)&t){t^=(<<i);x=f[x][i];}
if(x==y) return x;
for(int i=;i>=;i--){
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
}
return f[x][];
}
int main(){
n=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=,u,v;i<n;i++)
{
u=read(),v=read();
add_edge(u,v);add_edge(v,u);
}
dfs(); for(int i=;i<=n;i++){
add(l[i],a[i]);add(r[i]+,a[i]);
}
int q;char op[];
q=read();
while(q--){
int u,v;
scanf("%s",op);
u=read(),v=read();
if(op[]=='Q'){
int t=lca(u,v);
int ans=query(l[u])^query(l[v])^a[t];
if(ans)puts("Yes");
else puts("No");
}
else{
add(l[u],a[u]);add(r[u]+,a[u]);
a[u]=v;
add(l[u],a[u]);add(r[u]+,a[u]);
}
}
}
【bzoj2819】Nim的更多相关文章
- 【BZOJ2819】Nim 树状数组+LCA
[BZOJ2819]Nim Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可 ...
- 【bzoj2819】Nim DFS序+树状数组+倍增LCA
题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...
- 【bzoj2819】 Nim
www.lydsy.com/JudgeOnline/problem.php?id=2819 (题目链接) 题意 动态树上路径异或和. Solution Nim取石子游戏的sg值就是每堆石子的异或和,所 ...
- 【bzoj2819】Nim(dfs序+树状数组/线段树)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2819 首先根据SG定理,可得若每堆石子数量的异或值为0,则后手必胜,反之先手必胜.于是 ...
- 【HDU3032】Nim or not Nim?(博弈论)
[HDU3032]Nim or not Nim?(博弈论) 题面 HDU 题解 \(Multi-SG\)模板题 #include<iostream> #include<cstdio& ...
- 洛谷 P2197 【模板】nim游戏 解题报告
P2197 [模板]nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以 ...
- 【POJ】【2068】Nim
博弈论/DP 这是Nim?这不是巴什博奕的变形吗…… 我也不会捉啊,不过一看最多只有20个人,每人最多拿16个石子,总共只有8196-1个石子,范围好像挺小的,嗯目测暴力可做. so,记忆化搜索直接水 ...
- 【POJ】【2975】Nim
博弈论 我哭……思路错误WA了6次?(好像还有手抖点错……) 本题是要求Nim游戏的第一步必胜策略有几种. 一开始我想:先全部异或起来得到ans,从每个比ans大的堆里取走ans个即可,答案如此累计… ...
- 【BZOJ】【2819】NIM
这题……咋说捏,其实是一道披着博弈论外衣的树上操作问题…… 随便用dfs序或者树链剖分转成序列,然后查询路径上的所有点的NIM和(异或和)就行了,毕竟除了是在树上以外,就是裸的NIM问题. 树链剖分: ...
随机推荐
- 处理jQuery append加入的元素 绑定事件无效的方法
通过jquery append(或者before.after,一样)新添加进网页的元素,常用的事件不能触发,比如:append了id 为 abc 的元素,那么 $(#abc).click(functi ...
- CentOS7安装docker 启动不了解决篇
[root@test ~]# yum update [root@test ~]# yum install docker [root@test ~]# service docker start Redi ...
- 安装Dubbo注册中心(Zookeeper-3.4.6)
样例视频教程:http://www.roncoo.com/course/view/f614343765bc4aac8597c6d8b38f06fd Dubbo建议使用Zookeeper作为服务的注册中 ...
- js返回格式化的日期(年-月-日)
var d = new Date(); var str = d.getFullYear()+"-"+(d.getMonth()+1)+"-"+d.getDate ...
- 【Android Developers Training】 106. 创建并检测地理围栏
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
- 【Android Developers Training】 85. 不要有冗余的下载
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
- 【Android Developers Training】 19. 序言:通过Fragments构建动态UI
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
- USACO Dynamic Programming (1)
首先看一下题目: Introduction Dynamic programming is a confusing name for a programming technique that drama ...
- 怎么使用CURL传输工具发送get或者post指令
1.先下载CURL,见网盘 2.使用,可以直接到doc,cd到curl.exe目录,然后执行 或者用脚本 Set exeRs = WshShell.Exec("curl.exe -F &qu ...
- AngularJs学习笔记1——总体介绍
这周末在家呆了两天,正好中午闲暇时间继续分享Angularjs相关,今天主要分享Angularjs总体介绍及数据绑定部分内容,下面直接进入主题. 1.基本概念: AngularJS是为了克服HTML在 ...