POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)

Description

Dear Contestant,

I'm going to have a party at my villa at Hali-Bula to celebrate my retirement from BCM. I wish I could invite all my co-workers, but imagine how an employee can enjoy a party when he finds his boss among the guests! So, I decide not to invite both an employee and his/her boss. The organizational hierarchy at BCM is such that nobody has more than one boss, and there is one and only one employee with no boss at all (the Big Boss)! Can I ask you to please write a program to determine the maximum number of guests so that no employee is invited when his/her boss is invited too? I've attached the list of employees and the organizational hierarchy of BCM.

Best,

--Brian Bennett

P.S. I would be very grateful if your program can indicate whether the list of people is uniquely determined if I choose to invite the maximum number of guests with that condition.

Input

The input consists of multiple test cases. Each test case is started with a line containing an integer n (1 ≤ n ≤ 200), the number of BCM employees. The next line contains the name of the Big Boss only. Each of the following n-1 lines contains the name of an employee together with the name of his/her boss. All names are strings of at least one and at most 100 letters and are separated by blanks. The last line of each test case contains a single 0.

Output

For each test case, write a single line containing a number indicating the maximum number of guests that can be invited according to the required condition, and a word Yes or No, depending on whether the list of guests is unique in that case.

Sample Input

6

Jason

Jack Jason

Joe Jack

Jill Jason

John Jack

Jim Jill

2

Ming

Cho Ming

0

Sample Output

4 Yes

1 No

Http

POJ:https://vjudge.net/problem/POJ-3342

HDU:https://vjudge.net/problem/HDU-2412

UVAlive:https://vjudge.net/problem/UVALive-3794

UVA:https://vjudge.net/problem/UVA-1220

Source

树形动态规划

题目大意

在一棵树上选取若干个点,使得没有任意两个点相邻且点权值和最大,并问最大的方案数是否唯一。

解决思路

这题和POJ2342其实是差不多的,只是增加了一个要判断是否唯一。那么关于本题的基本框架请到这里来看,本文着重讲一下如何判断唯一性。

我们知道对于一个点i和其儿子节点j来说,F[i][0]=sum(max(F[j][1],F[j][0])) ,F[i][1]=sum(F[j][0])+Value[i](上题已经说过啦),那么我们只要再加一个bool数组来存放方案是否唯一就可以啦。

我们定义Unique[i]为判断是否唯一的数组,0表示不唯一,1表示唯一;Unique[i][0]表示不选i时的唯一性,Unique[i][1]表示选i时的唯一性。

首先来看Unique[i][1]。我们知道F[i][1]=sum(F[j][0]),也就是说i只要有任意一颗子树不唯一,i就不唯一,所以有if (Unique[j][0]==0) Unique[i][1]=0;

再来看Unique[i][0]。因为F[i][0]=sum(max(F[j][0],F[j][1])),所以Unique[i][0]应该与F[j][0],F[j][1]中大的的Unique有关。

最后要注意的是,F[j][0]是可能为0的,也就是说没有选节点(这在叶子结点的上一层节点会出现),这个时候对于Unique[j][0]的讨论是无意义的(没有点怎么会有不同的方案呢),所以要跳过(楼主在这里WA了好多次)。更多细节请参看代码

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<vector>
#include<algorithm>
#include<string>
#include<map>
using namespace std; const int maxN=300;
const int inf=2147483647; int n;
int F[maxN][5];
vector<int> E[maxN];
bool Unique[maxN][5];
map<string,int> Map;//因为输入的是字符串,所以我们用一个Map将其转换成数字编号 void dfs(int u); int main()
{
while (cin>>n)
{
if (n==0)
break;
memset(F,0,sizeof(F));
memset(Unique,0,sizeof(Unique));
for (int i=1;i<=n;i++)
E[i].clear();
Map.clear();
string u,v;
int cnt=0; cin>>u;
cnt++;
Map[u]=cnt;
int Boss=cnt; for (int i=1;i<n;i++)//输入字符串并分配编号
{
cin>>u>>v;
if (Map[u]==0)
Map[u]=++cnt;
if (Map[v]==0)
Map[v]=++cnt;
E[Map[v]].push_back(Map[u]);
//In[Map[u]]++;
} dfs(Boss); bool ok;
cout<<max(F[Boss][1],F[Boss][0])<<' ';
if (F[Boss][1]==F[Boss][0])
ok=0;
else
if (F[Boss][1]>F[Boss][0])
ok=Unique[Boss][1];
else
ok=Unique[Boss][0];
if (ok)
{
cout<<"Yes"<<endl;
}
else
cout<<"No"<<endl;
/*for (int i=1;i<=n;i++)
cout<<F[i][0]<<' '<<F[i][1]<<endl;
cout<<endl;
for (int i=1;i<=n;i++)
cout<<Unique[i][0]<<' '<<Unique[i][1]<<endl;*/
}
return 0;
} void dfs(int u)
{
Unique[u][1]=Unique[u][0]=1;//唯一性先置为唯一
for (int i=0;i<E[u].size();i++)
{
int v=E[u][i];
dfs(v); if ((Unique[v][0]==0)&&(F[v][0]!=0))//注意这里一定要有F[v][0]!=0这一句,因为若不加的话那些没有选择任何节点的方案也会统计进去,造成出错
Unique[u][1]=0;
F[u][1]+=F[v][0]; //F[u][0]+=max(F[v][0],F[v][1]);
if (F[v][0]>F[v][1])
{
F[u][0]+=F[v][0];
if (Unique[v][0]==0)
Unique[u][0]=0;
}
else
if (F[v][0]<F[v][1])
{
F[u][0]+=F[v][1];
if (Unique[v][1]==0)
Unique[u][0]=0;
}
else if (F[v]!=0)//这里的F[v]!=0也必须有!否则会出现和上面一样的情况
{
F[u][0]+=F[v][0];
Unique[u][0]=0;
}
}
F[u][1]++;
return;
}

POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)的更多相关文章

  1. POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划)

    POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划) Descri ...

  2. POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for UNIX / UVAlive 5418 A Plug for UNIX / SCU 1671 A Plug for UNIX (网络流)

    POJ 1087 A Plug for UNIX / HDU 1526 A Plug for UNIX / ZOJ 1157 A Plug for UNIX / UVA 753 A Plug for ...

  3. POJ 2152 fire / SCU 2977 fire(树型动态规划)

    POJ 2152 fire / SCU 2977 fire(树型动态规划) Description Country Z has N cities, which are numbered from 1 ...

  4. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  5. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  6. hdu 2412 Party at Hali-Bula【树形dp】

    HDU 2412 和poj 2342(hdu 1520)差不多,多了一个判断最优解是(Yes)否(No)唯一.关键问题也在这个判断最优解是否唯一上. 先定义dp[u][2],表示选(dp[][1])或 ...

  7. POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环)

    POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环) Description Arbi ...

  8. POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat 二分)

    POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat ...

  9. 【POJ 3140】 Contestants Division(树型dp)

    id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS   Memory Limit: 65536K Tot ...

随机推荐

  1. SVN环境搭建步骤

    方法:一.准备工作1. Subversion服务器程序先到官方网站上下载最新版本.2. TortoiseSVN客户端程序它是一个客户端程序,用来与Subvers服务端通讯.Subversion自带一个 ...

  2. css3 linear-gradient渐变效果及兼容性处理

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. GPU编程--kernels(2)

    "如何区分不同的数据单位单位呢?" "如何确定程序是在CPU端执行,还是GPU端执行呢?" "如何确定要调用的GPU线程数呢?" 下面举一个 ...

  4. 多线程异步编程示例和实践-Task

    上篇博文中,我们介绍了Thread和ThreadPool: 多线程异步编程示例和实践-Thread和ThreadPool 本文中我们继续,说一下TPL(Task Parallel Library, 简 ...

  5. M41T11-RTC(实时时钟)

    一.理论准备 1. 主要器件:STM8单片机.M41T11时钟IC.32.768kHz晶振等. 2. 外围设备:烧录工具ST-Link/v2.串口.5v供电SATA线. 3. 主要思想:通过单片机对时 ...

  6. Android Studio的两种模式及签名配置

    我们使用Android Studio 运行我们的app,无非两种模式:debug和release模式. debug模式 debug模式使用一个默认的debug.keystore进行签名. 这个默认签名 ...

  7. 9个常用iptables配置实例

    iptables命令可用于配置Linux的包过滤规则,常用于实现防火墙.NAT.咋一看iptables的配置很复杂,掌握规律后,其实用iptables完成指定任务并不难,下面我们通过具体实例,学习ip ...

  8. iOS的内存分析和内存管理

    iOS的内存分析和内存管理 [内存管理]一直是iOS开发中的一个重点. 本文就带你从内存分析开始一步步了解内存的占用情况,从真实的情况中领悟真正项目开发过程中的内存的使用情况. 注:本文默认你熟悉 M ...

  9. sharepoint rest api 创建文档库 文件夹

    function createFolder() { var requestHeaders = { "Accept": "application/json;odata=ve ...

  10. head first python helloword

    如何使用python 打出hello word 在python shell 键入print 'hello word'( python 2) or  print ("hello word&qu ...