这个题目大意是:

    有N个城市,编号为0~N-1,给定N-1条无向带权边,Q个询问,每个询问求三个城市连起来的最小权值。

    多组数据 每组数据  1 < N < 50000  1 < Q < 70000;

    一道多源最短路的题目,注意题目数据:N、Q都很大

    不能考虑Floyd、SPFA、Dijkstra、Bellman-Ford等最短路算法

    再看N-1条边,明显构成一棵树,最短路有且只有一条

    很明显需要LCA....

    不懂LCA的点!我!点!我

    我们所熟知的LCA是求两个点的最短路,而该题稍微变形,要求三个点

    所以我们可以两两求LCA,然后把三个dist值加起来除以二

    而两点的dist值是这样算的:dist[a]+dist[b]-2*dist[LCA(a,b)]

    代码如下:

    

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 200010
#define M 600010
using namespace std;
struct DATA
{
int from,to,dis,next,i;
}road[N],ques[M];
int dist[N],head1[N],head2[M],f[N],ans[M],n,q,len1,len2,fun=;
bool vis[N],book[M],found[N];
void add1(int a,int b,int c,int i)
{
len1++;
road[len1].from=a;
road[len1].to=b;
road[len1].dis=c;
road[len1].i=i;
road[len1].next=head1[a];
head1[a]=len1;
}
void add2(int a,int b,int c,int i)
{
len2++;
ques[len2].from=a;
ques[len2].to=b;
ques[len2].dis=c;
ques[len2].i=i;
ques[len2].next=head2[a];
head2[a]=len2;
}
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}
void marge(int x,int y){if(find(x)!=find(y)) f[y]=x;}
void Tarjan(int u,int dev)
{
int e=head1[u],a,b,i,tmp;
while(e!=-)
{
a=road[e].to;
i=road[e].i;
tmp=dev+road[e].dis;
if(!vis[a] && !found[i])
{
found[i]=;
dist[a]=tmp;
Tarjan(a,tmp);
vis[a]=;
marge(u,a);
}
e=road[e].next;
}
e=head2[u];
while(e!=-)
{
a=ques[e].to;
i=ques[e].i;
if(vis[a] && !book[i])
{
book[i]=;
b=find(a);
ans[i]=dist[a]+dist[u]-*dist[b];
}
e=ques[e].next;
}
return ;
}
void init()
{
int i;
len1=,len2=;
for(i=;i<N;i++)
{
road[i].from=road[i].to=road[i].dis=road[i].next=road[i].i=;
f[i]=i;
}
for(i=;i<M;i++)
ques[i].from=ques[i].to=ques[i].dis=ques[i].next=ques[i].i=;
memset(head1,-,sizeof(head1));
memset(head2,-,sizeof(head2));
memset(dist,,sizeof(dist));
memset(vis,,sizeof(vis));
memset(book,,sizeof(book));
memset(found,,sizeof(found));
memset(ans,,sizeof(ans));
return ;
}
int main()
{
// freopen("1.in","r",stdin);
// freopen("test.out","w",stdout);
while(~scanf("%d",&n))
{
if(fun++) printf("\n");
init();
int i,a,b,c,tmp=;
for(i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
add1(a,b,c,i);
add1(b,a,c,i);
tmp=min(min(a,b),tmp);
}
scanf("%d",&q);
for(i=;i<=q;i++)
{
scanf("%d%d%d",&a,&b,&c);
add2(a,b,,i);
add2(b,a,,i);
add2(a,c,,i+q);
add2(c,a,,i+q);
add2(b,c,,i+*q);
add2(c,b,,i+*q);
}
Tarjan(tmp,);
for(i=;i<=q;i++)
printf("%d\n",(ans[i]+ans[i+q]+ans[i+*q])/);
}
return ;
}

ZOJ 3195 Design the city 题解的更多相关文章

  1. zoj——3195 Design the city

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

  2. ZOJ 3195 Design the city (LCA 模板题)

    Cerror is the mayor of city HangZhou. As you may know, the traffic system of this city is so terribl ...

  3. zoj 3195 Design the city LCA Tarjan

    题目链接 : ZOJ Problem Set - 3195 题目大意: 求三点之间的最短距离 思路: 有了两点之间的最短距离求法,不难得出: 对于三个点我们两两之间求最短距离 得到 d1 d2 d3 ...

  4. ZOJ 3195 Design the city LCA转RMQ

    题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...

  5. ZOJ - 3195 Design the city

    题目要对每次询问将一个树形图的三个点连接,输出最短距离. 利用tarjan离线算法,算出每次询问的任意两个点的最短公共祖先,并在dfs过程中求出离根的距离.把每次询问的三个点两两求出最短距离,这样最终 ...

  6. zoj 3195 Design the city lca倍增

    题目链接 给一棵树, m个询问, 每个询问给出3个点, 求这三个点之间的最短距离. 其实就是两两之间的最短距离加起来除2. 倍增的lca模板 #include <iostream> #in ...

  7. ZOJ Design the city LCA转RMQ

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

  8. ZOJ3195 Design the city [2017年6月计划 树上问题04]

    Design the city Time Limit: 1 Second      Memory Limit: 32768 KB Cerror is the mayor of city HangZho ...

  9. xtu summer individual 1 C - Design the city

    C - Design the city Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu D ...

随机推荐

  1. 自己动手编写Maven的插件

    Maven的插件机制是完全依赖Maven的生命周期的,因此理解生命周期至关重要.本文参考官方文档后使用archetype创建,手动创建太麻烦. 创建创建项目 选择maven-archetype-moj ...

  2. [.net 面向对象程序设计深入](14)Redis——基础

    [.net 面向对象程序设计深入](14)Redis——基础 很长一段时间没更新博客了,坚持做一件事,真不是件容易的事,后面我会继续尽可能的花时间更新完这个系列文章. 因这个系列的文章涉及的范围太大了 ...

  3. DAX/PowerBI系列 - 父子层级(Parent-Child Hierarchy)

    DAX/PowerBI系列 - 父子层级(Parent-Child Hierarchy)参考文章见最后 难度: ◆◆◇◇◇(2星) 应用场景: 其实很多时候对数据汇总都会有层级关系的问题,不过说的不是 ...

  4. Spring总结_04_容器和bean

     一.概念理解 1.容器 IoC容器负责容纳并管理bean,在Spring中,BeanFactory是IoC容器的核心接口. 它的职责包括:实例化.定位.配置应用程序中的对象及建立这些对象间的依赖. ...

  5. Spark_总结五

    Spark_总结五 1.Storm 和 SparkStreaming区别 Storm                      纯实时的流式处理,来一条数据就立即进行处理 SparkStreaming ...

  6. 出现http://cwiki.apache.org/confluence/display/MAVEN/MojoFailureException异常

    解决方案 1.在eclipse的菜单中,进入Window > Preferences > Java > Installed JREs > Execution Environme ...

  7. 从Hash Killer I、II、III论字符串哈希

    首先,Hash Killer I.II.III是BZOJ上面三道很经典的字符串哈希破解题.当时关于II,本人还琢磨了好久,但一直不明白为啥别人AC的代码都才0.3kb左右,直到CYG神犇说可以直接随机 ...

  8. 一切app源于生活 用于生活 一个利于生活的app——利生活

    现在的app软件可以说 各行各业都基本达到饱和阶段 因为智能手机时代让我们的世界缩小了十倍百倍甚至千倍,我们可以足不出户知天下可以足不出户的去购物. 既然app利于生活 那么今天我所要开发的一个app ...

  9. https单向认证和双向认证区别

    关于证书 1.每个人都可以使用一些证书生成工具为自己的站点生成证书(比如jdk的keytool),大家称它为“自签名证书”,但是自己生成的证书是不被互联网承认的,所以浏览器会报安全提示,要求你手动安装 ...

  10. 浩哥解析MyBatis源码(一)——执行流程

    原创作品,可以转载,但是请标注出处地址: 一.MyBatis简介 MyBatis框架是一种轻量级的ORM框架,当下十分流行,配合Spring+Spring MVC组成SSM框架,能够胜任几乎所有的项目 ...