隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列
隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列
在本篇我们会讨论HMM模型最后一个问题的求解,即即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列。在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型。
HMM模型的解码问题最常用的算法是维特比算法,当然也有其他的算法可以求解这个问题。同时维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题,比如之前讲到的文本挖掘的分词原理中我们讲到了单独用维特比算法来做分词。
本文关注于用维特比算法来解码HMM的的最可能隐藏状态序列。
1. HMM最可能隐藏状态序列求解概述
在HMM模型的解码问题中,给定模型$\lambda = (A, B, \Pi)$和观测序列$O =\{o_1,o_2,...o_T\}$,求给定观测序列O条件下,最可能出现的对应的状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$,即$P(I^*|O)$要最大化。
一个可能的近似解法是求出观测序列$O$在每个时刻$t$最可能的隐藏状态$i_t^*$然后得到一个近似的隐藏状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$。要这样近似求解不难,利用隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率中第五节的定义:在给定模型$\lambda$和观测序列$O$时,在时刻$t$处于状态$q_i$的概率是$\gamma_t(i)$,这个概率可以通过HMM的前向算法与后向算法计算。这样我们有:$$i_t^* = arg \max_{1 \leq i \leq N}[\gamma_t(i)], \; t =1,2,...T$$
近似算法很简单,但是却不能保证预测的状态序列是整体是最可能的状态序列,因为预测的状态序列中某些相邻的隐藏状态可能存在转移概率为0的情况。
而维特比算法可以将HMM的状态序列作为一个整体来考虑,避免近似算法的问题,下面我们来看看维特比算法进行HMM解码的方法。
2. 维特比算法概述
维特比算法是一个通用的解码算法,是基于动态规划的求序列最短路径的方法。在文本挖掘的分词原理中我们已经讲到了维特比算法的一些细节。
既然是动态规划算法,那么就需要找到合适的局部状态,以及局部状态的递推公式。在HMM中,维特比算法定义了两个局部状态用于递推。
第一个局部状态是在时刻$t$隐藏状态为$i$所有可能的状态转移路径$i_1,i_2,...i_t$中的概率最大值。记为$\delta_t(i)$:$$\delta_t(i) = \max_{i_1,i_2,...i_{t-1}}\;P(i_t=i, i_1,i_2,...i_{t-1},o_t,o_{t-1},...o_1|\lambda),\; i =1,2,...N$$
由$\delta_t(i)$的定义可以得到$\delta$的递推表达式:$$\begin{align} \delta_{t+1}(i) & = \max_{i_1,i_2,...i_{t}}\;P(i_{t+1}=i, i_1,i_2,...i_{t},o_{t+1},o_{t},...o_1|\lambda) \\ & = \max_{1 \leq j \leq N}\;[\delta_t(j)a_{ji}]b_i(o_{t+1})\end{align}$$
第二个局部状态由第一个局部状态递推得到。我们定义在时刻$t$隐藏状态为$i$的所有单个状态转移路径$(i_1,i_2,...,i_{t-1},i)$中概率最大的转移路径中第$t-1$个节点的隐藏状态为$\Psi_t(i)$,其递推表达式可以表示为:$$\Psi_t(i) = arg \; \max_{1 \leq j \leq N}\;[\delta_{t-1}(j)a_{ji}]$$
有了这两个局部状态,我们就可以从时刻0一直递推到时刻$T$,然后利用$\Psi_t(i)$记录的前一个最可能的状态节点回溯,直到找到最优的隐藏状态序列。
3. 维特比算法流程总结
现在我们来总结下维特比算法的流程:
输入:HMM模型$\lambda = (A, B, \Pi)$,观测序列$O=(o_1,o_2,...o_T)$
输出:最有可能的隐藏状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$
1)初始化局部状态:$$\delta_1(i) = \pi_ib_i(o_1),\;i=1,2...N$$$$\Psi_1(i)=0,\;i=1,2...N$$
2) 进行动态规划递推时刻$t=2,3,...T$时刻的局部状态:$$\delta_{t}(i) = \max_{1 \leq j \leq N}\;[\delta_{t-1}(j)a_{ji}]b_i(0_{t}),\;i=1,2...N$$$$\Psi_t(i) = arg \; \max_{1 \leq j \leq N}\;[\delta_{t-1}(j)a_{ji}],\;i=1,2...N$$
3) 计算时刻$T$最大的$\delta_{T}(i)$,即为最可能隐藏状态序列出现的概率。计算时刻$T$最大的$\Psi_t(i)$,即为时刻$T$最可能的隐藏状态。$$P* = \max_{1 \leq j \leq N}\delta_{T}(i)$$$$i_T^* = arg \; \max_{1 \leq j \leq N}\;[\delta_{T}(i)]$$
4) 利用局部状态$\Psi(i)$开始回溯。对于$t=T-1,T-2,...,1$:$$i_t^* = \Psi_{t+1}(i_{t+1}^*)$$
最终得到最有可能的隐藏状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$
4. HMM维特比算法求解实例
下面我们仍然用隐马尔科夫模型HMM(一)HMM模型中盒子与球的例子来看看HMM维特比算法求解。
我们的观察集合是:$$V=\{红,白\},M=2$$
我们的状态集合是:$$Q =\{盒子1,盒子2,盒子3\}, N=3 $$
而观察序列和状态序列的长度为3.
初始状态分布为:$$\Pi = (0.2,0.4,0.4)^T$$
状态转移概率分布矩阵为:
$$A = \left( \begin{array} {ccc} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 &0.5 \end{array} \right) $$
观测状态概率矩阵为:
$$B = \left( \begin{array} {ccc} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \end{array} \right) $$
球的颜色的观测序列:$$O=\{红,白,红\}$$
按照我们上一节的维特比算法,首先需要得到三个隐藏状态在时刻1时对应的各自两个局部状态,此时观测状态为1:
$$\delta_1(1) = \pi_1b_1(o_1) = 0.2 \times 0.5 = 0.1$$
$$\delta_1(2) = \pi_2b_2(o_1) = 0.4 \times 0.4 = 0.16$$
$$\delta_1(3) = \pi_3b_3(o_1) = 0.4 \times 0.7 = 0.28$$
$$\Psi_1(1)=\Psi_1(2) =\Psi_1(3) =0$$
现在开始递推三个隐藏状态在时刻2时对应的各自两个局部状态,此时观测状态为2:
$$\delta_2(1) = \max_{1\leq j \leq 3}[\delta_1(j)a_{j1}]b_1(o_2) = \max_{1\leq j \leq 3}[0.1 \times 0.5, 0.16 \times 0.3, 0.28\times 0.2] \times 0.5 = 0.028$$
$$\Psi_2(1)=3$$
$$\delta_2(2) = \max_{1\leq j \leq 3}[\delta_1(j)a_{j2}]b_2(o_2) = \max_{1\leq j \leq 3}[0.1 \times 0.2, 0.16 \times 0.5, 0.28\times 0.3] \times 0.6 = 0.0504$$
$$\Psi_2(2)=3$$
$$\delta_2(3) = \max_{1\leq j \leq 3}[\delta_1(j)a_{j3}]b_3(o_2) = \max_{1\leq j \leq 3}[0.1 \times 0.3, 0.16 \times 0.2, 0.28\times 0.5] \times 0.3 = 0.042$$
$$\Psi_2(3)=3$$
继续递推三个隐藏状态在时刻3时对应的各自两个局部状态,此时观测状态为1:
$$\delta_3(1) = \max_{1\leq j \leq 3}[\delta_2(j)a_{j1}]b_1(o_3) = \max_{1\leq j \leq 3}[0.028 \times 0.5, 0.0504 \times 0.3, 0.042\times 0.2] \times 0.5 = 0.00756$$
$$\Psi_3(1)=2$$
$$\delta_3(2) = \max_{1\leq j \leq 3}[\delta_2(j)a_{j2}]b_2(o_3) = \max_{1\leq j \leq 3}[0.028 \times 0.2, 0.0504\times 0.5, 0.042\times 0.3] \times 0.4 = 0.01008$$
$$\Psi_3(2)=2$$
$$\delta_3(3) = \max_{1\leq j \leq 3}[\delta_2(j)a_{j3}]b_3(o_3) = \max_{1\leq j \leq 3}[0.028 \times 0.3, 0.0504 \times 0.2, 0.042\times 0.5] \times 0.7 = 0.0147$$
$$\Psi_3(3)=3$$
此时已经到最后的时刻,我们开始准备回溯。此时最大概率为$\delta_3(3)$,从而得到$i_3^* =3$
由于$\Psi_3(3)=3$,所以$i_2^* =3$, 而又由于$\Psi_2(3)=3$,所以$i_1^* =3$。从而得到最终的最可能的隐藏状态序列为:$(3,3,3)$
5. HMM模型维特比算法总结
如果大家看过之前写的文本挖掘的分词原理中的维特比算法,就会发现这两篇之中的维特比算法稍有不同。主要原因是在中文分词时,我们没有观察状态和隐藏状态的区别,只有一种状态。但是维特比算法的核心是定义动态规划的局部状态与局部递推公式,这一点在中文分词维特比算法和HMM的维特比算法是相同的,也是维特比算法的精华所在。
维特比算法也是寻找序列最短路径的一个通用方法,和dijkstra算法有些类似,但是dijkstra算法并没有使用动态规划,而是贪心算法。同时维特比算法仅仅局限于求序列最短路径,而dijkstra算法是通用的求最短路径的方法。
(欢迎转载,转载请注明出处。欢迎沟通交流: pinard.liu@ericsson.com)
隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列的更多相关文章
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- 隐马尔科夫模型HMM介绍
马尔科夫链是描述状态转换的随机过程,该过程具备“无记忆”的性质:即当前时刻$t$的状态$s_t$的概率分布只由前一时刻$t-1$的状态$s_{t-1}$决定,与时间序列中$t-1$时刻之前的状态无关. ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型HMM(一)HMM模型
隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比 ...
- 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型 HMM(Hidden Markov Model)
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...
- 猪猪的机器学习笔记(十七)隐马尔科夫模型HMM
隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来 ...
- 用hmmlearn学习隐马尔科夫模型HMM
在之前的HMM系列中,我们对隐马尔科夫模型HMM的原理以及三个问题的求解方法做了总结.本文我们就从实践的角度用Python的hmmlearn库来学习HMM的使用.关于hmmlearn的更多资料在官方文 ...
- 机器学习之隐马尔科夫模型HMM(六)
摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步 ...
随机推荐
- java构造代码块,构造函数和普通函数的区别和调用时间
在这里我们谈论一下构造代码块,构造函数和普通函数的区别和调用时间.构造代码块:最早运行,比构造函数运行的时间好要提前,和构造函数一样,只在对象初始化的时候运行.构造函数:运行时间比构造代码块时间晚,也 ...
- python——迭代器和生成器
1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优 ...
- EasyUI datagrid默认勾选checkbox时注意事项
在使用easyui的datagrid默认选中复选框时遇到的一个问题:就是加载程序默认选中复选框时死活选不中,查了好多资料才知道是easyui的datagrid的singleSelect属性设置为‘tr ...
- 【国家集训队2012】tree(伍一鸣)
Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 ...
- 权限管理系统 mysql 数据脚本
# SQL-Front 5.1 (Build 4.16) /*!40101 SET @OLD_SQL_MODE=@@SQL_MODE */; /*!40101 SET SQL_MODE='STRICT ...
- WPF 杂谈——资源文件
编写一个应用难免要用到WPF本身的控件.不管是WinForm还是网页都会有自己的控件.只是在写法和用法上有所不同而以.而控件命名却离不开那几个单词.所以不用担心判断不出来哪个是按扭,哪个是文本框.举个 ...
- MVC 5 + EF6 完整教程16 -- 控制器详解
Controller作为持久层和展现层的桥梁, 封装了应用程序的逻辑,是MVC中的核心组件之一. 本篇文章我们就来谈谈 Controller, 主要讨论两个方面: Controller运行机制简介 C ...
- Openstack Swift 原理、架构与 API 介绍
OpenStack Swift 开源项目提供了弹性可伸缩.高可用的分布式对象存储服务,适合存储大规模非结构化数据.本文将深入介绍 Swift 的基本设计原理.对称式的系统架构和 RESTful API ...
- [js笔记整理]正则篇
一.正则基本概念 1.一种规则.模式 2.强大的字符串匹配工具 3.在js中常与字符串函数配合使用 二.js正则写法 正则在js中以正则对象存在: (1)var re=new RegExp(正则表达式 ...
- c#实现windows远程桌面连接程序
c#实现windows远程桌面连接程序 使用winform制作windows远程桌面连接程序,windows自带了远程桌面连接,我们需要将远程桌面连接集成 到自己的winform程序,并实现管理远程主 ...