[51nod1232]完美数
如果一个数能够被组成它的各个非0数字整除,则称它是完美数。例如:1-9都是完美数,10,11,12,101都是完美数,但是13就不是完美数(因为13不能被数字3整除)。
现在给定正整数x,y,求x和y之间(包含x和y的闭区间)共有多少完美数。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数,X, Y中间用空格分割。(1 <= X <= Y <= 10^18)
Output
输出共T行,对应区间中完美数的数量。
1..10的lcm为2520,从1..10里选若干个数的lcm个数只有四十多个。。
f[i][j][k]表示十进制下长度为i位的数字里,那个数字模2520后的值为j的倍数,数位上各个非0数字的lcm为第k种。
之后就是正常的数位DP了。
一开始不会做是因为状态表示得不对...第二维没有考虑倍数...结果统计的复杂度就上天了...
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstdlib>
#define ll long long
#define ull unsigned long long
#define ui unsigned int
//#define d double
#define ld long double
const int maxn=,inf=;
ll f[][][];
int NEXT[][],LCM[][],id[],num[];
int i,j,k,n,m,s,t,ans; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while(rx<''&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>='')ra=ra*+rx-,rx=getchar();return ra*fh;
} inline int gcd(int a,int b){return !b?a:gcd(b,a%b);}
inline void pre(){
int i,j,tmp=;
memset(f,,sizeof(f));
for(i=;i<=;i++){
if(!(%i))id[i]=++tmp;
LCM[i][]=LCM[i][]=i;
for(j=;j<=;j++)LCM[i][j]=i*j/gcd(i,j);
}
for(i=;i<;i++)for(j=;j<=;j++)NEXT[i][j]=(i*+j)%;
}
ll dfs(int i,int p,int lcm,bool pr){
if(i<)return !(p%lcm);
if(!pr&&f[i][p][id[lcm]]!=-)return f[i][p][id[lcm]];
int mx=!pr?:num[i];ll tmp=;
for(int j=;j<=mx;j++)
tmp+=dfs(i-,NEXT[p][j],LCM[lcm][j],pr&&j==mx);
if(!pr)f[i][p][id[lcm]]=tmp;
return tmp;
}
inline ll get(ll x){
int len=;while(x)num[len++]=x%,x/=;
return dfs(len-,,,);
}
int main(){
pre();ll l,r;
for(int t=read();t;t--)
scanf("%lld%lld",&l,&r),
printf("%lld\n",get(r)-get(l-));
}
[51nod1232]完美数的更多相关文章
- 华为OJ平台——完美数
import java.util.Scanner; /** * * 完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数. * 它所有的真因子(即除了自身以外的约数)的和(即 ...
- SDUT 1220 完美数
完美数 Time Limit: 1000ms Memory limit: 65536K 题目描述 任何一个自然数的约数中都有1和它本身,我们把小于它本身的因数叫做这个自然数的真约数. 如6的所有真 ...
- 1000以内完全数(完美数)获取实现---基于python
"""题目: 如果一个数恰好等于它的因子之和,则称该数为"完全数" .各个小于它的约数(真约数,列出某数的约数,去掉该数本身,剩下的就是它的真约数)的 ...
- [Swift]LeetCode507. 完美数 | Perfect Number
We define the Perfect Number is a positive integer that is equal to the sum of all its positive divi ...
- 51nod 1232 完美数 数位dp
1232 完美数 题目来源: 胡仁东 基准时间限制:2 秒 空间限制:131072 KB 如果一个数能够被组成它的各个非0数字整除,则称它是完美数.例如:1-9都是完美数,10,11,12,101都 ...
- Leetcode 507.完美数
完美数 对于一个 正整数,如果它和除了它自身以外的所有正因子之和相等,我们称它为"完美数". 给定一个 正整数 n, 如果他是完美数,返回 True,否则返回 False 示例: ...
- 507 Perfect Number 完美数
对于一个 正整数,如果它和除了它自身以外的所有正因子之和相等,我们称它为“完美数”.给定一个 正整数 n, 如果他是完美数,返回 True,否则返回 False示例:输入: 28输出: True解释: ...
- Java实现 LeetCode 507 完美数
507. 完美数 对于一个 正整数,如果它和除了它自身以外的所有正因子之和相等,我们称它为"完美数". 给定一个 整数 n, 如果他是完美数,返回 True,否则返回 False ...
- 完美数java
完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数.它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身.如果一个数恰好等于它的因子之和,则称该数为&q ...
随机推荐
- java并发编程的艺术——第五章总结(Lock锁与队列同步器)
Lock锁 锁是用来控制多个线程访问共享资源的方式. 一般来说一个锁可以防止多个线程同时访问共享资源(但有些锁可以允许多个线程访问共享资源,如读写锁). 在Lock接口出现前,java使用synchr ...
- 探索C++对象模型
只说C++对象模型在内存中如何分配这是不现实的,所以这里选择VS 2013作为调试环境具体探讨object在内存中分配情况.目录给出了具体要探讨的所有模型,正文分标题依次讨论.水平有限,如有错误之处请 ...
- Coursera深度学习(DeepLearning.ai)编程题&笔记
因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logi ...
- lesson - 2 yum /单用户/救援模式/Linux 启动
课程大纲:1. yum使用yum 是一个在线安装软件包的工具,它可以帮我们解决软件包的依赖,这个日后会详细介绍.我们介绍了以下几个用法:yum list 这个命令可以列出所有安装过和未安装的软 ...
- java操作时间,将当前时间减一年,减一天,减一个月
在Java中操作时间的时候,常常遇到求一段时间内的某些值,或者计算一段时间之间的天数 Date date = new Date();//获取当前时间 Calendar calendar = Calen ...
- hello world 为什么我们看到学习中有这一句话!!!
Hello World ,中文意思:你好,世界.世界上的第一个程序就是Hello World,由Brian Kernighan创作. Hello, world"程序是指在计算机屏幕上输出“H ...
- 浏览器中的user-agent的几种模式
服务器一般会根据访问的浏览器进行识别,针对不同浏览器才用不同的网站样式及结构,也是通过这个信息判断用户使用的平台模式(手机,pc或平板) 识别为手机一般有这几个关键字: "Windows P ...
- Spring加载XML机制
转载自跳刀的兔子 http://www.cnblogs.com/shipengzhi/articles/3029872.html 加载文件顺序 情形一:使用classpath加载且不含通配符 这是 ...
- MAC上安装mysql及workbench
下载mysql for mac https://dev.mysql.com/downloads/installer/ 官网下载很慢---百度云:链接: https://pan.baidu.com ...
- Hive安装与配置详解
既然是详解,那么我们就不能只知道怎么安装hive了,下面从hive的基本说起,如果你了解了,那么请直接移步安装与配置 hive是什么 hive安装和配置 hive的测试 hive 这里简单说明一下,好 ...