洛谷P3199 [HNOI2009]最小圈(01分数规划)
题意
Sol
暴力01分数规划可过
标算应该是这个
#include<bits/stdc++.h>
#define Pair pair<int, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 3001, mod = 998244353, INF = 2e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
vector<Pair> v[MAXN];
double a[MAXN], dis[MAXN];
int vis[MAXN], times[MAXN], can[MAXN];
bool SPFA(int S, double k) {
queue<int> q; q.push(S);
for(int i = 1; i <= N; i++) vis[i] = 0, times[i] = 0, dis[i] = INF;
dis[S] = 0;
times[S]++;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
can[p] = 1;
for(auto &sta : v[p]) {
int to = sta.fi; double w = sta.se;
if(chmin(dis[to], dis[p] + w - k)) {
if(!vis[to]) q.push(to), vis[to] = 1, times[to]++;
if(times[to] > 50) return 1;
}
}
}
return 0;
}
bool check(double val) {
memset(can, 0, sizeof(can));
for(int i = 1; i <= N; i++)
if(!can[i] && SPFA(i, val)) return 1;
return 0;
}
signed main() {
//Fin(a);
N = read(); M = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read(); double z; scanf("%lf", &z);
v[x].push_back({y, z});
}
double l = -1e7 - 10, r = 1e7 + 10;
while(r - l > eps) {
double mid = (l + r) / 2;
if(check(mid)) r = mid;
else l = mid;
}
printf("%.8lf", l);
return 0;
}
/*
10 3
aaaabbbbab
7 7 3 9 10 6 7 6 6 1
2 6 2
1 3 1
2 9 1
*/
洛谷P3199 [HNOI2009]最小圈(01分数规划)的更多相关文章
- P3199 [HNOI2009]最小圈 01分数规划
裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...
- 洛谷 P3199 [HNOI2009]最小圈
P3199 [HNOI2009]最小圈 题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点 ...
- BZOJ 1486: [HNOI2009]最小圈 [01分数规划]
裸题...平均权值最小的环.... 注意$dfs-spfa$时$dfs(cl)$...不要写成$dfs(u)$ #include <iostream> #include <cstdi ...
- BZOJ_1486_[HNOI2009]最小圈_01分数规划
BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...
- BZOJ 1486 最小圈(01分数规划)
好像是很normal的01分数规划题.最小比率生成环. u(c)=sigma(E)/k.转化一下就是k*u(c)=sigma(E). sigma(E-u(c))=0. 所以答案对于这个式子是有单调性的 ...
- 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划
洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...
- 【洛谷 P3199】 [HNOI2009]最小圈(分数规划,Spfa)
题目链接 一开始不理解为什么不能直接用\(Tarjan\)跑出换直接求出最小值,然后想到了"简单环",恍然大悟. 二分答案,把所有边都减去\(mid\),判是否存在负环,存在就\( ...
- [HNOI2009]最小圈(分数规划+SPFA判负环)
题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...
- 【BZOJ1486】最小圈(分数规划)
[BZOJ1486]最小圈(分数规划) 题面 BZOJ 洛谷 求图中边权和除以点数最小的环 题解 分数规划 二分答案之后将边权修改为边权减去二分值 检查有无负环即可 #include<iostr ...
随机推荐
- Tomcat 的 ManagerApp 简单使用
当启动Tomcat的时候,直接访问http://localhost:8080会直接进入下面页面,原因是Tomcat的默认项目是部署在webapps目录下的ROOT目录下的,这个manager项目就在R ...
- w7 python35 输出中文乱码解决
1.乱码纷争在python自带的控制台正常 但是cmd就跪了,用的vs code也是同样问题,不想以前学习python27那么单纯,前面加个#UTF就可以了 网上寻求解决办法 import io,sy ...
- SLG手游Java服务器的设计与开发——架构分析
微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...
- [NewLife.XCode]扩展属性(替代多表关联Join提升性能)
NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netstandard,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示 ...
- mktemp 命令
Linux mktemp命令用于建立暂存文件. mktemp建立的一个暂存文件,供shell script使用. mktemp命令专门用来创建临时文件,并且其创建的临时文件是唯一的.shell会根据m ...
- linux 命令 — tr
tr 对stdin字符进行替换.删除和压缩,基本形式 tr [options] set1 set2 将输入的字符串中的set1字符转换为set2中对应位置的字符 set1.set2表示字符集,如果se ...
- Linux官方源、镜像源汇总
本文收录在日常运维杂烩系列 一.站点版 1.企业站 搜狐:http://mirrors.sohu.com/ 网易:http://mirrors.163.com/ 阿里云:http://mirrors. ...
- Python下用Scrapy和MongoDB构建爬虫系统(1)
本文由 伯乐在线 - 木羊 翻译,xianhu 校稿.未经许可,禁止转载!英文出处:realpython.com.欢迎加入翻译小组. 这篇文章将根据真实的兼职需求编写一个爬虫,用户想要一个Python ...
- “多个单核CPU”与“单个多核CPU”哪种方式性能较强?
多个单核CPU: 成本更高,因为每个CPU都需要一定的线路电路支持,这样对主板上布局布线极为不便.并且当运行多线程任务时,多线程间通信协同合作也是一个问题.依赖总线的传输,速度较慢,且每一个线程因为运 ...
- [转]Rabbitmq的使用及Web监控工具使用
本文转自:https://blog.csdn.net/xingxing513234072/article/details/51014850 一.文档资料 1.官方网站:http://ww ...