「JLOI2015」战争调度

感觉一到晚上大脑就宕机了...

题目本身不难,就算没接触过想想也是可以想到的

这个满二叉树的深度很浅啊,每个点只会和它的\(n-1\)个祖先匹配啊

于是可以暴力枚举祖先链的选择

然后处理某个点\(i\)时,已经枚举了\(i\)到根的祖先的选择

这时候我们发现枚举\(i\)后,左右儿子的贡献的独立的,然后左右儿子的选择对上面是没有影响的

可以直接设\(dp_{i,j}\)表示\(i\)子树\(j\)黑点的最大值

然后直接子树合并两个儿子就可以了

复杂度?

\(T(n)=2(2T(n-1)+2^n)\)

好像是这个,化出来差不多是\(O(n2^{2n})\)


Code:

#include <cstdio>
#include <cctype>
#include <algorithm>
using std::max;
template <class T>
void read(T &x)
{
x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
}
#define ls id<<1
#define rs id<<1|1
const int N=1<<10;
int dp[N][N],w[N][N],f[N][N],cho[N],n,m;
void dfs(int id,int k)
{
for(int i=0;i<=k;i++) dp[id][i]=0;
if(k==1)
{
for(int i=1;i<n;i++)
{
int fa=id>>i;
if(cho[fa]) dp[id][1]+=w[id][fa];
else dp[id][0]+=f[id][fa];
}
return;
}
cho[id]=0;
dfs(ls,k>>1),dfs(rs,k>>1);
for(int i=0;i<=k>>1;i++)
for(int j=0;j<=k>>1;j++)
dp[id][i+j]=max(dp[id][i+j],dp[ls][i]+dp[rs][j]);
cho[id]=1;//w[i][j]
dfs(ls,k>>1),dfs(rs,k>>1);
for(int i=0;i<=k>>1;i++)
for(int j=0;j<=k>>1;j++)
dp[id][i+j]=max(dp[id][i+j],dp[ls][i]+dp[rs][j]);
}
int main()
{
read(n),read(m);
int k=1<<n-1;
for(int i=1;i<=k;i++)
{
int id=k-1+i;
for(int j=1;j<n;j++)
read(w[id][id>>j]);//<=m
}
for(int i=1;i<=k;i++)
{
int id=k-1+i;
for(int j=1;j<n;j++)
read(f[id][id>>j]);
}
dfs(1,k);
int ans=0;
for(int i=0;i<=m;i++) ans=max(ans,dp[1][i]);
printf("%d\n",ans);
return 0;
}

2019.2.25

「JLOI2015」战争调度 解题报告的更多相关文章

  1. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  2. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

  3. 「JLOI2015」管道连接 解题报告

    「JLOI2015」管道连接 先按照斯坦纳树求一个 然后合并成斯坦纳森林 直接枚举树的集合再dp一下就好了 Code: #include <cstdio> #include <cct ...

  4. 「JLOI2015」战争调度

    题目 [内存限制:256 MiB][时间限制:1000 ms] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有 ...

  5. 【LOJ】#2111. 「JLOI2015」战争调度

    题解 记录一个数组dp[i][S][k]表示第i个点,它上面所有的点的状态(参军或者后勤)可以用状态S来表示,一共有k个平民参军的最大收益,当然数组开不下,可以用vector动态开 我们对于每个平民枚 ...

  6. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  7. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  8. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

  9. 「NOI2015」寿司晚宴 解题报告

    「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...

随机推荐

  1. 10 Comparisons with adjectvies and nouns

    1 比较级用来比较两个词条之间的关系,比较级是通过在形容词后加 er 或者在形容词之前加 more 构成. 它的反义句是通过在形容词前加 less 或者 not as构成. Perfume sales ...

  2. Java 异常处理的误区和经验总结

    Java 异常处理的误区和经验总结   1 本文着重介绍了 Java 异常选择和使用中的一些误区,希望各位读者能够熟练掌握异常处理的一些注意点和原则,注意总结和归纳.只有处理好了异常,才能提升开发人员 ...

  3. [官网]How to configure the Microsoft Distributed Transaction Coordinator (MSDTC) on Linux

    How to configure the Microsoft Distributed Transaction Coordinator (MSDTC) on Linux APPLIES TO: SQL ...

  4. 902. Kth Smallest Element in a BST

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. You ...

  5. Appscanner实验还原code3

    # Author: Baozi #-*- codeing:utf-8 -*- import _pickle as pickle from sklearn import ensemble import ...

  6. 每日一小时linux(1)--sysRq

    参考https://www.ibm.com/developerworks/cn/linux/l-cn-sysrq/index.html SysRq 是什么 你是否遇到服务器不能通过 SSH 登录,也不 ...

  7. 当应用程序不是以UserInteractive 模式运行时显示模式对话框或窗体

    最近在做一个WCF程序的时候,WCF程序老是弹出一个错误“当应用程序不是以UserInteractive 模式运行时显示模式对话框或窗体是无效操作.请指定ServiceNotification或Def ...

  8. python数据结构与算法第十二天【快速排序】

    1. 原理如图所示: 2.代码实现 def quick_sort(alist, start, end): """快速排序""" # 递归的退 ...

  9. ajax查看详细返回信息

    查看详细成功返回信息: success : function(data, textStatus, jqXHR) { console.log(data); console.log(textStatus) ...

  10. Java对象clone()的测试

    Object中自带native clone()方法. 研究了一下用法. public class DeepCopyTest { public static void main(String[] arg ...