题目描述

小Y家里有一个大森林,里面有n棵树,编号从1到n。一开始这些树都只是树苗,只有一个节点,标号为1。这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力。

小Y掌握了一种魔法,能让第l棵树到第r棵树的生长节点长出一个子节点。同时她还能修改第l棵树到第r棵树的生长节点。她告诉了你她使用魔法的记录,你能不能管理她家的森林,并且回答她的询问呢?

题解

这题太神了,废了我一下午。

看到区间操作,就可以想到差分或者扫描线,我们会发现这题基本没有好的方法去执行批量操作,所以我们要用扫描线。

这道题的操作有,区间生长一个点,区间换父亲。

我们对于每个1操作新建一个虚点,然后把它们串起来,然后把每个0操作长出来的点挂在上一个虚点上,然后一通做完之后的树长这样(白点为虚点,黑点为实点)。

时间从上到下为从早到晚。

对于一个换父亲操作,假如说我们要对最下面的白点对应的换父亲的操作换到右边从上到下第二个黑点上,那么我们可以这样。

可以手玩一下,所有有效节点对应的deep是对的。

然后我们用LCT维护这一过程,求两点

注意判断1操作的作用范围。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#define N 200002
using namespace std;
int tr[N][],fa[N],size[N],w[N],cnt,n,m,tot,top,b[N],L[N],R[N],ji[N],qqq,ans,ans2[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline bool isroot(int x){return !x||(tr[fa[x]][]!=x&&tr[fa[x]][]!=x);}
inline bool ge(int x){return tr[fa[x]][]==x;}
inline void pushup(int x){size[x]=size[tr[x][]]+size[tr[x][]]+w[x];}
inline void newnode(int x){++cnt;w[cnt]=size[cnt]=x;}
inline void rotate(int x){
int y=fa[x],o=ge(x);
if(isroot(x))return;
tr[y][o]=tr[x][o^];fa[tr[y][o]]=y;
if(!isroot(y))tr[fa[y]][ge(y)]=x;fa[x]=fa[y];
fa[y]=x;tr[x][o^]=y;
pushup(y);pushup(x);
}
inline void splay(int x){
while(!isroot(x)){
int y=fa[x];
if(isroot(y))rotate(x);
else rotate(ge(y)==ge(x)?y:x),rotate(x);
}
}
inline int access(int x){int y=;for(;x;y=x,x=fa[x])splay(x),tr[x][]=y,pushup(x);return y;}//qiu LCA get
inline void link(int x,int y){access(x);splay(x);fa[x]=y;}
inline void cut(int x){access(x);splay(x);fa[tr[x][]]=;tr[x][]=;pushup(x);}
struct node{
int pos,tag,x,y;
inline bool operator <(const node &b)const{
if(pos!=b.pos)return pos<b.pos;
else return tag<b.tag;
}
}a[N<<];
int main(){
n=rd();m=rd();int opt,l,r,k;
newnode();newnode();link(,);
int now=;b[tot=]=;L[tot]=;R[tot]=n;
for(int i=;i<=m;++i){
opt=rd();
if(!opt){
l=rd();r=rd();newnode();
b[++tot]=cnt;L[tot]=l;R[tot]=r;
a[++top]=node{,i-N,cnt,now};
}
else if(opt==){
l=rd();r=rd();k=rd();l=max(l,L[k]);r=min(r,R[k]);
if(l>r)continue;
newnode();link(cnt,now);
a[++top]=node{l,i-N,cnt,b[k]};a[++top]=node{r+,i-N,cnt,now};
now=cnt;
}
else{
k=rd();l=rd();r=rd();ji[i]=++qqq;
a[++top]=node{k,i,b[l],b[r]};
}
}
sort(a+,a+top+);int p=;
for(int i=;i<=n;++i)
for(;a[p].pos==i;++p)
if(a[p].tag<=){cut(a[p].x);link(a[p].x,a[p].y);}
else{
ans=;
access(a[p].x);splay(a[p].x);ans+=size[a[p].x];
int lca=access(a[p].y);splay(a[p].y);ans+=size[a[p].y];
access(lca);splay(lca);ans-=size[lca]*;
ans2[ji[a[p].tag]]=ans;
}
for(int i=;i<=qqq;++i)printf("%d\n",ans2[i]);
return ;
}

[ZJOI2016]大森林(LCT)的更多相关文章

  1. 洛谷P3348 [ZJOI2016]大森林 [LCT]

    传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...

  2. bzoj 4573: [Zjoi2016]大森林 lct splay

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 http://blog.csdn.net/lych_cys/article/details/5 ...

  3. [ZJOI2016]大森林

    Description: 小Y家里有一个大森林,里面有n棵树,编号从1到n 0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例 ...

  4. 【刷题】BZOJ 4573 [Zjoi2016]大森林

    Description 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力.小 ...

  5. BZOJ4573:[ZJOI2016]大森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 https://www.luogu.org/problemnew/show/P3348#sub ...

  6. P3348 [ZJOI2016]大森林

    \(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...

  7. bzoj 4573: [Zjoi2016]大森林

    Description 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树 都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. ...

  8. 【LuoguP3348】[ZJOI2016]大森林

    题目链接 题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y ...

  9. UOJ#195. 【ZJOI2016】大♂森林 LCT

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ195.html 题解 首先询问都可以放到最后处理. 对于操作,我们把它差分一下离线下来. 现在的问题就是从 ...

随机推荐

  1. zTree树形菜单使用实例

    在每个节点添加 id 和 pid, id 表示当前节点编号,pid 表示父节点编号 第一步:在页面显示菜单位置,添加 ul设置 class=”ztree” 第二步:开启简单数据格式支持 第三步:编写树 ...

  2. vue二次实战(二)

    https://www.cnblogs.com/jellify/p/9522477.html install的弹出框中输入sublimeTmpl,找到sublimeTmpl这个插件后回车 Vue路由 ...

  3. React 避免重渲染

    组件的重新渲染 我们可以在 React 组件中的 props 和 state 存放任何类型的数据,通过改变 props 和 state,去控制整个组件的状态.当 props 和 state 发生变化时 ...

  4. spring程序打包war,直接通过-jar启动,并指定spring.profiles.active参数控制多环境配置

    备注:spring boot有内嵌tomcat,jar项目可以用java -jar命令启动,war包也可以,且可以直接指定spring.profiles.active参数控制多环境配置 直接指定传参, ...

  5. python数据结构与算法第十三天【归并排序】

    1.代码实现 def merge_sort(alist): if len(alist) <= 1: return alist # 二分分解 num = len(alist)/2 left = m ...

  6. Java的HashMap数据结构

    标题太大~~~自己做点笔记.别人写得太好了. https://www.cnblogs.com/liwei2222/p/8013367.html HashMap 1.6时代, 使用Entry[]数组, ...

  7. django celery redis 定时任务

    0.目的 在开发项目中,经常有一些操作时间比较长(生产环境中超过了nginx的timeout时间),或者是间隔一段时间就要执行的任务. 在这种情况下,使用celery就是一个很好的选择.   cele ...

  8. 十分钟了结MySQL information_schema

    information_schema数据库是MySQL系统自带的数据库,它提供了数据库元数据的访问方式.感觉information_schema就像是MySQL实例的一个百科全书,记录了数据库当中大部 ...

  9. dataTable之自定义按钮实现全表 复制 打印 导出 重载

    //本文对常用表格插件datatable 的自定义按钮功能键进行详细解释//其中 15-78行是定义表单//16 18 19 三行定义自定义功能按钮 实现对全表的 复制 打印 导出(csv即excel ...

  10. java构造器和构建器

    本文摘自:https://blog.csdn.net/wh2827991/article/details/79013115 在实例化一个类的过程中,通常会遇到多个参数的构造函数,但如果有些参数是非必需 ...