1
2
3
4
5
6
7
8
mutex = threading.Lock()
#锁的使用
#创建锁
mutex = threading.Lock()
#锁定
mutex.acquire([timeout])
#释放
mutex.release()

概念

好几个人问我给资源加锁是怎么回事,其实并不是给资源加锁, 而是用锁去锁定资源,你可以定义多个锁, 像下面的代码, 当你需要独占某一资源时,任何一个锁都可以锁这个资源

就好比你用不同的锁都可以把相同的一个门锁住是一个道理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import  threading   
import  time   
      
counter = 0 
counter_lock = threading.Lock() #只是定义一个锁,并不是给资源加锁,你可以定义多个锁,像下两行代码,当你需要占用这个资源时,任何一个锁都可以锁这个资源 
counter_lock2 = threading.Lock()  
counter_lock3 = threading.Lock() 
   
#可以使用上边三个锁的任何一个来锁定资源 
    
class  MyThread(threading.Thread):#使用类定义thread,继承threading.Thread 
     def  __init__(self,name):   
        threading.Thread.__init__(self)   
        self.name = "Thread-" + str(name) 
     def run(self):   #run函数必须实现 
         global counter,counter_lock #多线程是共享资源的,使用全局变量 
         time.sleep(1);   
         if counter_lock.acquire(): #当需要独占counter资源时,必须先锁定,这个锁可以是任意的一个锁,可以使用上边定义的3个锁中的任意一个 
            counter += 1    
            print "I am %s, set counter:%s"  % (self.name,counter)   
            counter_lock.release() #使用完counter资源必须要将这个锁打开,让其他线程使用 
               
if  __name__ ==  "__main__":   
    for in xrange(1,101):   
        my_thread = MyThread(i) 
        my_thread.start()

线程不安全:

最普通的一个多线程小例子。我一笔带过地讲一讲,我创建了一个继承Thread类的子类MyThread,作为我们的线程启动类。按照规定,重写Thread的run方法,我们的线程启动起来后会自动调用该方法。于是我首先创建了10个线程,并将其加入列表中。再使用一个for循环,开启每个线程。在使用一个for循环,调用join方法等待所有线程结束才退出主线程。

这段代码看似简单,但实际上隐藏着一个很大的问题,只是在这里没有体现出来。你真的以为我创建了10个线程,并按顺序调用了这10个线程,每个线程为n增加了1.实际上,有可能是A线程执行了n++,再C线程执行了n++,再B线程执行n++。

这里涉及到一个“锁”的问题,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期(比如我们在每个线程的run方法中加入一个time.sleep(1),并同时输出线程名称,则我们会发现,输出会乱七八糟。因为可能我们的一个print语句只打印出一半的字符,这个线程就被暂停,执行另一个去了,所以我们看到的结果很乱),这种现象叫做“线程不安全”

线程锁:

于是,Threading模块为我们提供了一个类,Threading.Lock,锁。我们创建一个该类对象,在线程函数执行前,“抢占”该锁,执行完成后,“释放”该锁,则我们确保了每次只有一个线程占有该锁。这时候对一个公共的对象进行操作,则不会发生线程不安全的现象了。

于是,我们把代码更改如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding : uft-8
__author__ = 'Phtih0n'
import threading, time
class MyThread(threading.Thread):
    def __init__(self):
        threading.Thread.__init__(self)
    def run(self):
        global n, lock
        time.sleep(1)
        if lock.acquire():
            print n , self.name
            += 1
            lock.release()
if "__main__" == __name__:
    = 1
    ThreadList = []
    lock = threading.Lock()
    for in range(1200):
        = MyThread()
        ThreadList.append(t)
    for in ThreadList:
        t.start()
    for in ThreadList:
        t.join()
1
2
3
4
5
6
7
8
9
10
11
1 Thread-2
2 Thread-3
3 Thread-4
4 Thread-6
5 Thread-7
6 Thread-1
7 Thread-8
8 Thread-9
9 Thread-5
 
Process finished with exit code 0

  

我们看到,我们先建立了一个threading.Lock类对象lock,在run方法里,我们使用lock.acquire()获得了这个锁。此时,其他的线程就无法再获得该锁了,他们就会阻塞在“if lock.acquire()”这里,直到锁被另一个线程释放:lock.release()。

所以,if语句中的内容就是一块完整的代码,不会再存在执行了一半就暂停去执行别的线程的情况。所以最后结果是整齐的。

就如同在java中,我们使用synchronized关键字修饰一个方法,目的一样,让某段代码被一个线程执行时,不会打断跳到另一个线程中。

这是多线程占用一个公共对象时候的情况。如果多个线程要调用多个现象,而A线程调用A锁占用了A对象,B线程调用了B锁占用了B对象,A线程不能调用B对象,B线程不能调用A对象,于是一直等待。这就造成了线程“死锁”。

Threading模块中,也有一个类,RLock,称之为可重入锁。该锁对象内部维护着一个Lock和一个counter对象。counter对象记录了acquire的次数,使得资源可以被多次require。最后,当所有RLock被release后,其他线程才能获取资源。在同一个线程中,RLock.acquire可以被多次调用,利用该特性,可以解决部分死锁问题。

python多线程中锁的概念的更多相关文章

  1. python 多线程中的同步锁 Lock Rlock Semaphore Event Conditio

    摘要:在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lo ...

  2. 第十五章、Python多线程同步锁,死锁和递归锁

    目录 第十五章.Python多线程同步锁,死锁和递归锁 1. 引子: 2.同步锁 3.死锁 引子: 4.递归锁RLock 原理: 不多说,放代码 总结: 5. 大总结 第十五章.Python多线程同步 ...

  3. Sql Server 中锁的概念(1)

    Sql Server 中锁的概念   锁的概述 一. 为什么要引入锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 丢失更新A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破 ...

  4. python函数中闭包的概念说明

    函数中闭包的概念说明 闭包: 内层函数对外层函数非全局变量的引用,就叫做闭包 判断闭包方法 ._closure_ : 执行后返回有效信息就是闭包,返回none就不是闭包 举例1: 是闭包 def wr ...

  5. 彻底理解Python多线程中的setDaemon与join【配有GIF示意】

    在进行Python多线程编程时, join() 和 setDaemon() 是最常用的方法,下面说说两者的用法和区别. 1.join () 例子:主线程A中,创建了子线程B,并且在主线程A中调用了B. ...

  6. python多线程中join()的理解

    在 Python 的多线程编程中,经常碰到 thread.join()这样的代码.那么今天咱们用实际代码来解释一下 join 函数的作用. 第一,当一个进程启动之后,会默认产生一个主线程,因为线程是程 ...

  7. Sql Server 中锁的概念

    锁的概述 一. 为什么要引入锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 丢失更新A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 脏 ...

  8. 用C语言解决python多线程中的GIL问题

    在使用python多线程的时候为了解决GIL问题,有些代码得用C语言写,那么就得生成动态链接库. 当创建动态链接库时,独立位置信息(position independent)代码也需要生成.这可以帮助 ...

  9. Python多线程中阻塞(join)与锁(Lock)的使用误区

    参考资料:https://blog.csdn.net/cd_xuyue/article/details/52052893 1使用两个循环分别处理start和join函数.即可实现并发. threads ...

随机推荐

  1. 使用 Topshelf 结合 Quartz.NET 创建 Windows 服务

    Ø  前言 之前一篇文章已经介绍了,如何使用 Topshelf 创建 Windows 服务.当时提到还缺少一个任务调度框架,就是 Quartz.NET.而本文就展开对 Quartz.NET 的研究,以 ...

  2. 什么是CRUD

    CRUD是指在做计算处理时的增加(Create).读取查询(Retrieve).更新(Update)和删除(Delete)几个单词的首字母简写.主要被用在描述软件系统中数据库或者持久层的基本操作功能.

  3. super 的用法

    通过用static来定义方法或成员,为我们编程提供了某种便利,从某种程度上可以说它类似于C语言中的全局函数和全局变量.但是,并不是说有了这种便利,你便可以随处使用,如果那样的话,你便需要认真考虑一下自 ...

  4. C++ primer 11章关联容器

    map set multimap (关键字可重复出现) multiset 无序 unordered_map  (用哈希函数组织的map) unordered_set unordered_multima ...

  5. 利用PHP实现登录与注册功能以及使用PHP读取mysql数据库——以表格形式显示数据

    登录界面 <body><form action="login1.php" method="post"><div>用户名:&l ...

  6. python中的深拷贝和浅拷贝

    python的复制,深拷贝和浅拷贝的区别   在python中,对象赋值实际上是对象的引用.当创建一个对象,然后把它赋给另一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用 一 ...

  7. linux 测试 get 请求 跳过SSL证书验证

    Linux 下测试 get 请求: curl : curl "http://www.qq.com" # 标准输出页面内容 curl -i "http://www.qq.c ...

  8. Canvas画圆形

    转载:https://developer.mozilla.org/zh-CN/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes#圆弧 function d ...

  9. [C++]头文件<algorithm>

    本博文仅示例一些常用的函数: sort.for_each. 1. sort /* STL - <algorithm> - sort template< class RandomIt, ...

  10. Chrome及Firefox插件

    注:以下所有工具都是笔者自己目前使用的 密码管理工具 lastpass 护眼工具 眼睛护航 待续……