Hdoj 1007 Quoit Design 题解
Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.
Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
Sample Output
0.71
0.00
0.75
Author
CHEN, Yue
Source
思路
最小点对算法:
- 只有2个点:就返回这2个点的距离
- 只有3个点:就返回两两组成中最短的距离
- 大于3个点:采用分治,步骤如下:
- 根据横坐标x对所有的店进行升序排列
- 找出中心线L,将点集划分为左右2部分\(SL,SR\)
- 递归分治解决找出\(d = min(dL,dR)\),表示\(SL,SR\)中的最近点对
- 将处于\([L-d,L+d]\)中的点按照y值升序排列,不断更新最近点对的距离(如果最近点对的情况是一个在\(SL\),一个在\(SR\)里面,肯定不会超过这个边界)
代码
#include<bits/stdc++.h>
using namespace std;
struct node
{
double x;
double y;
}a[100010],b[100010];
bool cmpx(node a, node b)
{
return a.x < b.x;
}
bool cmpy(node a, node b)
{
return a.y < b.y;
}
double dis(node a, node b)
{
return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
}
double binaryCal(int l, int r, node* a)
{
if(r-l == 1) //只有2个点的情况
{
return dis(a[l], a[r]);
}
if(r-l == 2) //有3个点的情况
{
double tmp1 = dis(a[l],a[l+1]);
double tmp2 = dis(a[l+1],a[r]);
double tmp3 = dis(a[l],a[r]);
return min(tmp1, min(tmp2,tmp3));
}
int mid = (l+r)/2;
double min_d = min(binaryCal(l,mid,a), binaryCal(mid+1,r,a));
double sqrt_min_d = sqrt(min_d);
int pos = 0;
for(int i=l;i<=r;i++)
{
if(a[i].x < a[mid].x + sqrt_min_d && a[i].x > a[mid].x - sqrt_min_d)
b[++pos] = a[i];
}//将位于[L-d,L+d]范围的点保存到b数组里面
sort(b+1,b+1+pos,cmpy); //按照y值进行排序
for(int i=1;i<=pos;i++)
for(int j=i+1;j<=pos;j++)
{
if(b[j].y - b[i].y > sqrt_min_d)
break;
min_d = min(min_d,dis(b[i],b[j]));
}
return min_d;
}
int main()
{
int N;
while(scanf("%d",&N)!=EOF)
{
if(N==0) break;
for(int i=1;i<=N;i++)
scanf("%lf%lf",&a[i].x, &a[i].y);
double ans = 0.0;
sort(a+1,a+1+N,cmpx);
ans = binaryCal(1,N,a);
printf("%.2lf\n",sqrt(ans)/2); //最后再处理开平方问题
}
return 0;
}
Hdoj 1007 Quoit Design 题解的更多相关文章
- 最近点对问题 POJ 3714 Raid && HDOJ 1007 Quoit Design
题意:有n个点,问其中某一对点的距离最小是多少 分析:分治法解决问题:先按照x坐标排序,求解(left, mid)和(mid+1, right)范围的最小值,然后类似区间合并,分离mid左右的点也求最 ...
- hdu 1007 Quoit Design 题解
原题地址 题目大意 查询平面内最近点对的距离,输出距离的一半. 暴力做法 枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时. 那么我们考虑去优化这一个过程,我们在求 ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- 杭电OJ——1007 Quoit Design(最近点对问题)
Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...
- poj 1007 Quoit Design(分治)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
随机推荐
- 小小知识点(一)——利用电脑自带的BitLocker对磁盘加密
1.利用电脑自带的BitLocker可以对固定的或移动的磁盘加密 网上有很多的使用方法步骤,可参考百度经验:https://jingyan.baidu.com/article/636f38bb4fac ...
- mybatis的mapper注入失败
因为处在两个不同的资源文件夹下: 导致classpath无法加载其中一些文件,所以修改为classpath*后顺利进行. <!-- 加载spring容器 --> <!-- neede ...
- python文件读和写
fileHandle = open ( 'G:/qqfile/1.txt','w' )fileHandle.write('abcd')#写文件 地址要用反斜杠fileHandle.close() fi ...
- 线程中的samaphore信号量及event事件
一.信号量 samaphore: 在程序中意思为同时允许几个线程运行,比如我们去水上乐园的滑梯玩时,有四个滑梯,每一个滑梯上当没有人在中间玩滑下去时才允许上人,四个滑梯1,2,3,4,同时最多四个人, ...
- django的配置文件字符串是怎么导入的?
写在开头: 每个APP都会有配置文件,像下代码Django等等这种的settings里面的配置导入都是字符串的,他们是怎么做的呢? MIDDLEWARE = [ 'django.middleware. ...
- ubuntu安装chkconfig.deb系统服务管理工具
chkconfig简介:chkconfig命令主要用来更新(启动或停止)和查询系统服务的运行级信息. 参数用法: --add 增加所指定的系统服务,让chkconfig指令得以管理它,并同时在系统 ...
- java的编程习惯影响程序性能
在Java程序中,性能问题的大部分原因并不在于Java语言,而是在于程序本身. 养成良好的编程习惯非常重要,能够显著地提升程序性能. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时 ...
- java连接CentOS7上的redis
这篇博客写得挺全的: https://blog.csdn.net/achenyuan/article/details/78521831?locationNum=3&fps=1 我也是跟着这篇博 ...
- Web移动端---iPhone X适配(底部栏黑横线)
一.相信大家有被iPhone X底部黑色横线支配的恐惧 上面我们可以看到,底部的导航栏被一条黑色横线所盖住,那么就很烦.下面我们可以开始进行适配环节 1.首先我们可以用 JS 判断手机环境是不是 iP ...
- Could not render e, see the console.
错误截图: 解决: 在application.properties中开启swagger swagger2.enable=true