Hdoj 1007 Quoit Design 题解
Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.
Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
Sample Output
0.71
0.00
0.75
Author
CHEN, Yue
Source
思路
最小点对算法:
- 只有2个点:就返回这2个点的距离
- 只有3个点:就返回两两组成中最短的距离
- 大于3个点:采用分治,步骤如下:
- 根据横坐标x对所有的店进行升序排列
- 找出中心线L,将点集划分为左右2部分\(SL,SR\)
- 递归分治解决找出\(d = min(dL,dR)\),表示\(SL,SR\)中的最近点对
- 将处于\([L-d,L+d]\)中的点按照y值升序排列,不断更新最近点对的距离(如果最近点对的情况是一个在\(SL\),一个在\(SR\)里面,肯定不会超过这个边界)
代码
#include<bits/stdc++.h>
using namespace std;
struct node
{
double x;
double y;
}a[100010],b[100010];
bool cmpx(node a, node b)
{
return a.x < b.x;
}
bool cmpy(node a, node b)
{
return a.y < b.y;
}
double dis(node a, node b)
{
return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
}
double binaryCal(int l, int r, node* a)
{
if(r-l == 1) //只有2个点的情况
{
return dis(a[l], a[r]);
}
if(r-l == 2) //有3个点的情况
{
double tmp1 = dis(a[l],a[l+1]);
double tmp2 = dis(a[l+1],a[r]);
double tmp3 = dis(a[l],a[r]);
return min(tmp1, min(tmp2,tmp3));
}
int mid = (l+r)/2;
double min_d = min(binaryCal(l,mid,a), binaryCal(mid+1,r,a));
double sqrt_min_d = sqrt(min_d);
int pos = 0;
for(int i=l;i<=r;i++)
{
if(a[i].x < a[mid].x + sqrt_min_d && a[i].x > a[mid].x - sqrt_min_d)
b[++pos] = a[i];
}//将位于[L-d,L+d]范围的点保存到b数组里面
sort(b+1,b+1+pos,cmpy); //按照y值进行排序
for(int i=1;i<=pos;i++)
for(int j=i+1;j<=pos;j++)
{
if(b[j].y - b[i].y > sqrt_min_d)
break;
min_d = min(min_d,dis(b[i],b[j]));
}
return min_d;
}
int main()
{
int N;
while(scanf("%d",&N)!=EOF)
{
if(N==0) break;
for(int i=1;i<=N;i++)
scanf("%lf%lf",&a[i].x, &a[i].y);
double ans = 0.0;
sort(a+1,a+1+N,cmpx);
ans = binaryCal(1,N,a);
printf("%.2lf\n",sqrt(ans)/2); //最后再处理开平方问题
}
return 0;
}
Hdoj 1007 Quoit Design 题解的更多相关文章
- 最近点对问题 POJ 3714 Raid && HDOJ 1007 Quoit Design
题意:有n个点,问其中某一对点的距离最小是多少 分析:分治法解决问题:先按照x坐标排序,求解(left, mid)和(mid+1, right)范围的最小值,然后类似区间合并,分离mid左右的点也求最 ...
- hdu 1007 Quoit Design 题解
原题地址 题目大意 查询平面内最近点对的距离,输出距离的一半. 暴力做法 枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时. 那么我们考虑去优化这一个过程,我们在求 ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- HDU 1007 Quoit Design(二分+浮点数精度控制)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- 杭电OJ——1007 Quoit Design(最近点对问题)
Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...
- poj 1007 Quoit Design(分治)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
随机推荐
- R语言
什么是R语言编程? R语言是一种用于统计分析和为此目的创建图形的编程语言.不是数据类型,它具有用于计算的数据对象.它用于数据挖掘,回归分析,概率估计等领域,使用其中可用的许多软件包. R语言中的不同数 ...
- oc之封装「可输入值」的UIStepper
2017.07.17 18:10* 字数 66 阅读 644评论 0喜欢 5 oc之封装「可输入值」的UIStepper 最终效果 要求: Platform: iOS7.0+ Language: Ob ...
- Git push提交时报错Permission denied(publickey)...Please make sure you have the correct access rights and the repository exists.
一.git push origin master 时出错 错误信息为: Permission denied(publickey). fatal: Could not read from remote ...
- babel (二) update to v7
一.rootmode In 7.1, we've introduced a rootMode option for further lookup if necessary. 二.Remove prop ...
- oracle查询不走索引的一些情况(索引失效)
Oracle建立索引的目的是为了避免全表扫描,提高查询的效率. 但是有些情况下发现即使建立了索引,但是写出来的查询还是很慢,然后会发现是索引失效导致的,所以需要了解一下那些情况会导致索引失效,即查询不 ...
- artTemplate之初印象
介绍 art-template 是JavaScript模板引擎,是一个简约.超快的模板引擎. 它采用作用域预声明的技术来优化模板渲染速度,从而获得接近 JavaScript 极限的运行性能,并且同时支 ...
- Velocity之初印象
Velocity 模板引擎介绍 在现今的软件开发过程中,软件开发人员将更多的精力投入在了重复的相似劳动中.特别是在如今特别流行的 MVC 架构模式中,软件各个层次的功能更加独立,同时代码的相似度也更加 ...
- 50分钟学会Laravel 50个小技巧(基于laravel5.2,仅供参考)
转载请注明:转载自 Yuansir-web菜鸟 | LAMP学习笔记 本文链接地址: 50分钟学会Laravel 50个小技巧 原文链接:< 50 Laravel Tricks in 50 Mi ...
- :before添加图片,IE8兼容
这是项目开发中遇到的奇怪的小问题: 在IE8下出现按钮点击后消失了,鼠标点击页面后却又出现: 最初的代码:添加背景图片的方法,这样是存在兼容问题的. 更改后代码:content中添加图片,完美兼容IE ...
- 用junit对java代码进行测试,需要注意
1.用@Test注解的方法必须没有返回值,返回值类型无:void 2.用@Test注解的方法必须没有参数.