Problem Description

Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.

In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.

Input

The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.

Output

For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.

Sample Input

2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0

Sample Output

0.71
0.00
0.75

Author

CHEN, Yue

Source

ZJCPC2004


思路

最小点对算法:

  1. 只有2个点:就返回这2个点的距离
  2. 只有3个点:就返回两两组成中最短的距离
  3. 大于3个点:采用分治,步骤如下:
    1. 根据横坐标x对所有的店进行升序排列
    2. 找出中心线L,将点集划分为左右2部分\(SL,SR\)
    3. 递归分治解决找出\(d = min(dL,dR)\),表示\(SL,SR\)中的最近点对
    4. 将处于\([L-d,L+d]\)中的点按照y值升序排列,不断更新最近点对的距离(如果最近点对的情况是一个在\(SL\),一个在\(SR\)里面,肯定不会超过这个边界)

代码

#include<bits/stdc++.h>
using namespace std;
struct node
{
double x;
double y;
}a[100010],b[100010];
bool cmpx(node a, node b)
{
return a.x < b.x;
}
bool cmpy(node a, node b)
{
return a.y < b.y;
}
double dis(node a, node b)
{
return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y);
}
double binaryCal(int l, int r, node* a)
{
if(r-l == 1) //只有2个点的情况
{
return dis(a[l], a[r]);
}
if(r-l == 2) //有3个点的情况
{
double tmp1 = dis(a[l],a[l+1]);
double tmp2 = dis(a[l+1],a[r]);
double tmp3 = dis(a[l],a[r]);
return min(tmp1, min(tmp2,tmp3));
}
int mid = (l+r)/2;
double min_d = min(binaryCal(l,mid,a), binaryCal(mid+1,r,a));
double sqrt_min_d = sqrt(min_d);
int pos = 0;
for(int i=l;i<=r;i++)
{
if(a[i].x < a[mid].x + sqrt_min_d && a[i].x > a[mid].x - sqrt_min_d)
b[++pos] = a[i];
}//将位于[L-d,L+d]范围的点保存到b数组里面
sort(b+1,b+1+pos,cmpy); //按照y值进行排序
for(int i=1;i<=pos;i++)
for(int j=i+1;j<=pos;j++)
{
if(b[j].y - b[i].y > sqrt_min_d)
break;
min_d = min(min_d,dis(b[i],b[j]));
}
return min_d; }
int main()
{
int N;
while(scanf("%d",&N)!=EOF)
{
if(N==0) break;
for(int i=1;i<=N;i++)
scanf("%lf%lf",&a[i].x, &a[i].y);
double ans = 0.0;
sort(a+1,a+1+N,cmpx);
ans = binaryCal(1,N,a);
printf("%.2lf\n",sqrt(ans)/2); //最后再处理开平方问题
}
return 0;
}

Hdoj 1007 Quoit Design 题解的更多相关文章

  1. 最近点对问题 POJ 3714 Raid && HDOJ 1007 Quoit Design

    题意:有n个点,问其中某一对点的距离最小是多少 分析:分治法解决问题:先按照x坐标排序,求解(left, mid)和(mid+1, right)范围的最小值,然后类似区间合并,分离mid左右的点也求最 ...

  2. hdu 1007 Quoit Design 题解

    原题地址 题目大意 查询平面内最近点对的距离,输出距离的一半. 暴力做法 枚举每一个点对的距离直接判断,时间复杂度是 $ O(n^2) $,对于这题来说会超时. 那么我们考虑去优化这一个过程,我们在求 ...

  3. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  4. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  5. 杭电OJ——1007 Quoit Design(最近点对问题)

    Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...

  6. poj 1007 Quoit Design(分治)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  7. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. hdu 1007 Quoit Design 分治求最近点对

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. Day1 初步认识Python

    天气有点阴晴不定~ (截图来自----------金角大王) 1.学习了计算机概论(CPU/Memory/Disk,memory的存在是为了解决信息传输产生的时延) CPU:精简指令集(RISC)-- ...

  2. P66 整环的零元

    R/I=0的零因子是0+I吗? 如果不是,那请问R/I的零因子是什么呢? R/I没有零因子 R/I的零元 是I中的元素定义的等价类 么  a是理想I的元素,自然也是R的元素

  3. RabbitMQ 安装与使用

    RabbitMQ 安装与使用   前言 吃多了拉就是队列,吃饱了吐就是栈 使用场景 对操作的实时性要求不高,而需要执行的任务极为耗时:(发送短信,邮件提醒,更新文章阅读计数,记录用户操作日志) 存在异 ...

  4. latex 图片标题居中

    1.有一个全局图片标题居中的方法: \usepackage[justification=centering]{caption} 2.如果排版时有的图标题想左对齐,有的想居中,前一个方法就不好了,这里可 ...

  5. node.js介绍和npm的使用

    Node.js介绍 打开Nodejs英文网:https://nodejs.org/en/ 中文网:http://nodejs.cn/ 我们会发现这样一句话: 翻译成中文如下: Node.js 是一个基 ...

  6. js刷新界面前事件onbeforeunload

    这个方法的作用是防止填写信息时不小心按了刷新(F5,刷新界面,返回). 目前能实现这个需求的只有这个方法. 具体代码如下: 1.首先在body添加 onbeforeunload 这个事件 <bo ...

  7. VS2015 + OPENCV + CUDA 安装流程

    VS2015  https://blog.csdn.net/guxiaonuan/article/details/73775519?locationNum=2&fps=1 OPENCV htt ...

  8. C#中is运算符

    is运算符可以检查对象是否与特定的类型兼容.“兼容”表示对象或者该类型,或者派生自该类型.例如,要检查变量是否与object类型兼容,可以使用下面的代码: int i=10; if(i  is  ob ...

  9. Yii2的save()方法容易出错的地方

    如果save()返回true, 但是数据没有保存成功,则应该是开启了事务且已经回滚 如果save()返回false, 则使用$model->errors查看错误原因 可以设置$model的场景, ...

  10. supervisor /var/run/supervisor/supervisor.sock not found 或者/tmp/supervisor.sock not found

    刚按装完supervisor,这时候用supervisorctr -c supervisor.conf 会报错: /var/run/supervisor/supervisor.sock not fou ...