【CF850E】Random Elections(FWT)

题面

洛谷

CF

题解

看懂题就是一眼题了。。。

显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了。

那么在赢另外两个人的过程中,一定是两个长度为\(2^n\)的二进制串的对应值都是\(1\)。

考虑每个人投票的贡献,如果是\(00\)或者\(11\)那么有两种排列,如果是\(01\)或者\(10\)就只有一种合法排列。

那么对于长度为\(2^n\)的数组自己对自己做一次异或卷积,每个数的贡献就是\(2\)的\(0\)的个数次方。

最终答案再乘三就好啦。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define inv2 500000004
int n,ans;char s[1<<20];
int bul[1<<20],pw[22],a[1<<20];
void FWT(int *a,int opt)
{
for(int i=1;i<(1<<n);i<<=1)
for(int p=i<<1,j=0;j<(1<<n);j+=p)
for(int k=0;k<i;++k)
{
int X=a[j+k],Y=a[i+j+k];
a[j+k]=(X+Y)%MOD;a[i+j+k]=(X+MOD-Y)%MOD;
if(opt==-1)a[j+k]=1ll*a[j+k]*inv2%MOD,a[i+j+k]=1ll*a[i+j+k]*inv2%MOD;
}
}
int main()
{
scanf("%d",&n);pw[0]=1;scanf("%s",s);
for(int i=1;i<=n;++i)pw[i]=(pw[i-1]<<1)%MOD;
for(int i=0;i<(1<<n);++i)bul[i]=bul[i>>1]+(i&1);
for(int i=0;i<(1<<n);++i)a[i]=s[i]-48;
FWT(a,1);
for(int i=0;i<(1<<n);++i)a[i]=1ll*a[i]*a[i]%MOD;
FWT(a,-1);
for(int i=0;i<(1<<n);++i)ans=(ans+1ll*a[i]*pw[n-bul[i]])%MOD;
ans=3ll*ans%MOD;
printf("%d\n",ans);
return 0;
}

【CF850E】Random Elections(FWT)的更多相关文章

  1. 【CF850E】Random Elections FWT

    [CF850E]Random Elections 题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列.现在进行三次比较,A-B,B-C ...

  2. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  3. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  4. 【BZOJ4589】Hard Nim(FWT)

    题解: 由博弈论可以知道题目等价于求这$n$个数$\^$为0 快速幂$+fwt$ 这样是$nlog^2$的 并不能过 而且得注意$m$的数组$\^$一下会生成$2m$ #include <bit ...

  5. Luogu4717 【模板】快速沃尔什变换(FWT)

    https://www.cnblogs.com/RabbitHu/p/9182047.html 完全没有学证明的欲望因为这个实在太好写了而且FFT就算学过也忘得差不多了只会写板子 #include&l ...

  6. 洛谷P4717 【模板】快速沃尔什变换(FWT)

    传送门 这玩意儿太骚了…… 参考了yyb巨佬的 //minamoto #include<iostream> #include<cstdio> #define ll long l ...

  7. 【WC2018】州区划分(FWT,动态规划)

    [WC2018]州区划分(FWT,动态规划) 题面 UOJ 洛谷 题解 首先有一个暴力做法(就有\(50\)分了) 先\(O(2^nn^2)\)预处理出每个子集是否合法,然后设\(f[S]\)表示当前 ...

  8. 【tornado】系列项目(二)基于领域驱动模型的区域后台管理+前端easyui实现

    本项目是一个系列项目,最终的目的是开发出一个类似京东商城的网站.本文主要介绍后台管理中的区域管理,以及前端基于easyui插件的使用.本次增删改查因数据量少,因此采用模态对话框方式进行,关于数据量大采 ...

  9. Android自己定义组件系列【7】——进阶实践(4)

    上一篇<Android自己定义组件系列[6]--进阶实践(3)>中补充了关于Android中事件分发的过程知识.这一篇我们接着来分析任老师的<可下拉的PinnedHeaderExpa ...

随机推荐

  1. iOS蓝牙开发之iBeacon技术

    iBeacon组成信息: 1 .UUID(universally unique identifier):一个128位的唯一标识一个或多个Beacon基站为特定类型或特定的组织. 2. Major:一个 ...

  2. 【转】linux if 判断

    UNIX Shell 里面比较字符写法: -eq   等于-ne    不等于-gt    大于-lt    小于-le    小于等于-ge   大于等于-z 空串=    两个字符相等!=    ...

  3. echarts使用笔记五:echarts的Zoom控件

    option = { title: { text: '趋势' }, tooltip : { trigger: 'axis', show:true, axisPointer : { // 坐标轴指示器, ...

  4. 社交CRM SCRM

    社交CRM - 国际版 Binghttps://cn.bing.com/search?FORM=U227DF&PC=U227&q=%E7%A4%BE%E4%BA%A4CRM 社交CRM ...

  5. C# web发布设置

    1.配置文件设置: 选择"自定义",配置文件框自己输入. 2.连接设置: 3.发布版本设置 4.预览 预览没问题点发布即可.

  6. Java遍历HashMap并修改(remove)(转载)

    遍历HashMap的方法有多种,比如通过获取map的keySet, entrySet, iterator之后,都可以实现遍历,然而如果在遍历过程中对map进行读取之外的操作则需要注意使用的遍历方式和操 ...

  7. 【学亮IT手记】Servlet的生命周期

    1.1 Servlet的生命周期 1.1.1 Servlet的生命周期概述 1.1.1.1 什么是生命周期 生命周期:一个对象从创建到销毁过程. 1.1.1.2 Servlet的生命周期(*****) ...

  8. day 7-18 mysql case when语句

    概述: sql语句中的case语句与高级语言中的switch语句,是标准sql的语法,适用于一个条件判断有多种值的情况下分别执行不同的操作. 首先,让我们看一下CASE的语法.在一般的SELECT中, ...

  9. K3 WISE安全认证方式

    k/3中间层注册三种安全认证方式: 交互式用户方式,网络服务方式,信任方式,是指组件服务中生成的COM+应用程序中的组件包的运行账户(注册中间层后产生很多ebo开头的和kdsvrmgr组件包). 三种 ...

  10. MyBatis全局配置文件的各项标签3

    mapper 将sql映射注册到全局配置中,这个我们在上一章已经使用过了, resource 这个属性是用来引用类路径下的sql映射文件 url 这个属性是用来引用网络路径或磁盘路径下的sql映射文件 ...