【CF850E】Random Elections(FWT)

题面

洛谷

CF

题解

看懂题就是一眼题了。。。

显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了。

那么在赢另外两个人的过程中,一定是两个长度为\(2^n\)的二进制串的对应值都是\(1\)。

考虑每个人投票的贡献,如果是\(00\)或者\(11\)那么有两种排列,如果是\(01\)或者\(10\)就只有一种合法排列。

那么对于长度为\(2^n\)的数组自己对自己做一次异或卷积,每个数的贡献就是\(2\)的\(0\)的个数次方。

最终答案再乘三就好啦。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define inv2 500000004
int n,ans;char s[1<<20];
int bul[1<<20],pw[22],a[1<<20];
void FWT(int *a,int opt)
{
for(int i=1;i<(1<<n);i<<=1)
for(int p=i<<1,j=0;j<(1<<n);j+=p)
for(int k=0;k<i;++k)
{
int X=a[j+k],Y=a[i+j+k];
a[j+k]=(X+Y)%MOD;a[i+j+k]=(X+MOD-Y)%MOD;
if(opt==-1)a[j+k]=1ll*a[j+k]*inv2%MOD,a[i+j+k]=1ll*a[i+j+k]*inv2%MOD;
}
}
int main()
{
scanf("%d",&n);pw[0]=1;scanf("%s",s);
for(int i=1;i<=n;++i)pw[i]=(pw[i-1]<<1)%MOD;
for(int i=0;i<(1<<n);++i)bul[i]=bul[i>>1]+(i&1);
for(int i=0;i<(1<<n);++i)a[i]=s[i]-48;
FWT(a,1);
for(int i=0;i<(1<<n);++i)a[i]=1ll*a[i]*a[i]%MOD;
FWT(a,-1);
for(int i=0;i<(1<<n);++i)ans=(ans+1ll*a[i]*pw[n-bul[i]])%MOD;
ans=3ll*ans%MOD;
printf("%d\n",ans);
return 0;
}

【CF850E】Random Elections(FWT)的更多相关文章

  1. 【CF850E】Random Elections FWT

    [CF850E]Random Elections 题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列.现在进行三次比较,A-B,B-C ...

  2. 【CF662C】Binary Table(FWT)

    [CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...

  3. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  4. 【BZOJ4589】Hard Nim(FWT)

    题解: 由博弈论可以知道题目等价于求这$n$个数$\^$为0 快速幂$+fwt$ 这样是$nlog^2$的 并不能过 而且得注意$m$的数组$\^$一下会生成$2m$ #include <bit ...

  5. Luogu4717 【模板】快速沃尔什变换(FWT)

    https://www.cnblogs.com/RabbitHu/p/9182047.html 完全没有学证明的欲望因为这个实在太好写了而且FFT就算学过也忘得差不多了只会写板子 #include&l ...

  6. 洛谷P4717 【模板】快速沃尔什变换(FWT)

    传送门 这玩意儿太骚了…… 参考了yyb巨佬的 //minamoto #include<iostream> #include<cstdio> #define ll long l ...

  7. 【WC2018】州区划分(FWT,动态规划)

    [WC2018]州区划分(FWT,动态规划) 题面 UOJ 洛谷 题解 首先有一个暴力做法(就有\(50\)分了) 先\(O(2^nn^2)\)预处理出每个子集是否合法,然后设\(f[S]\)表示当前 ...

  8. 【tornado】系列项目(二)基于领域驱动模型的区域后台管理+前端easyui实现

    本项目是一个系列项目,最终的目的是开发出一个类似京东商城的网站.本文主要介绍后台管理中的区域管理,以及前端基于easyui插件的使用.本次增删改查因数据量少,因此采用模态对话框方式进行,关于数据量大采 ...

  9. Android自己定义组件系列【7】——进阶实践(4)

    上一篇<Android自己定义组件系列[6]--进阶实践(3)>中补充了关于Android中事件分发的过程知识.这一篇我们接着来分析任老师的<可下拉的PinnedHeaderExpa ...

随机推荐

  1. javaweb之Cookie学习

    Cookie简介 HTTP是无状态协议,服务器不能记录浏览器的访问状态,也就是说服务器不能区分中两次请求是否由一个客户端发出.这样的设计严重阻碍的Web程序的设计.如:在我们进行网购时,买了一条裤子, ...

  2. Java对象的创建、内存布局和访问定位

    在Java运行时数据区中,我们知道了虚拟机内存的概况,本文介绍虚拟机内存中的数据的其它细节,如对象如何创建.如何布局以及如何访问. 基于实用的原则,这里以HotSpot虚拟机和常用的内存区域Java堆 ...

  3. react 组件列表

    let data=[ [ '同时入选IMDB250和豆瓣电影250的电影', '带你进入不正常的世界', '用电[影]来祭奠逝去的岁月', '女孩们的故事[电影]', '', '使用 App [找电影 ...

  4. v-show 与 v-if区别

    关于条件渲染 所谓条件渲染,就是根据不同的条件,使用不同的模板来生成 html. 在 Vue.js 中,使用 v-if 和 v-show 指令来控制条件渲染. 区别 v-show 会在app初始化的时 ...

  5. 剑指offer(6)

    题目: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转 ...

  6. Quartz 定时任务时间设置

    转自https://blog.csdn.net/zdx1515888659/article/details/79158169 quartz定时任务时间设置: 这些星号由左到右按顺序代表 : * * * ...

  7. Netty ByteBuf 和 String 转换

    参考https://blog.csdn.net/o1101574955/article/details/81024102 参考http://youyu4.iteye.com/blog/2361959 ...

  8. zabbix自定义监控项

    原因:zabbix监控系统自带的监控规则有限,如果需要更加灵活的定义监控项,可以通过修改配置文件实现 vim xxx/zabbix_agentd.conf UnsafeUserParameters=1 ...

  9. 猜数字游戏 在控制台运行--java详解!了;来玩

    import java.util.Scanner;//导入包 import java.util.Scanner; 注意格式 符号的使用 public class Demo{ //猜数字游戏 练习 pu ...

  10. 华硕X99-A II 安装使用 志强 XEON E5-1603 v4

    刚开始无法启动,Debug灯的数字不停的轮回变换,后来把XMP开关关闭后,就能正常启动了.如果不行,就多关机几次,一般3次以上应该就可以启动开了.之后就能正常使用了.