已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$

解答:显然只需考虑2个非负4个非正(或者2非正4非负)的情况.
不妨设$x_1,x_2\ge0;x_3,x_4,x_5,x_6\le0$,记$a_1=x_1,a_2=x_2,a_k=-x_k (k=3,4,5,6)$则题目变为
已知$a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2=6,a_1+a_2=a_3+a_4+a_5+a_6$,求证:$a_1a_2\cdots a_6\le\dfrac{1}{2}$
$\because a_1a_2\cdots a_6\le \left(\dfrac{a_1+a_2}{2}\right)^2\left(\dfrac{a_3+a_4+a_5+a_6}{4}\right)^4$
$=\dfrac{1}{4}\left(\dfrac{a_1+a_2}{2}\right)^4\left(\dfrac{a_3+a_4+a_5+a_6}{4}\right)^2$
$\le\dfrac{1}{4^3}(a_1^2+a_2^2)^2(a_3^2+a_4^2+a_5^2+a_6^2)\le\dfrac{1}{2\cdot4^3}\left(\dfrac{2\sum\limits_{i=1}^{6}a_i^2}{3}\right)^3$
$=\dfrac{1}{2}$
当$x_1,x_2,x_3,x_4,x_5,x_6$中两个取$\pm\sqrt{2}$,四个取$\mp\dfrac{\sqrt{2}}{2}$时取到等号.

MT【274】一道漂亮的不等式题的更多相关文章

  1. 洛谷P2918 [USACO08NOV]买干草(一道完全背包模板题)

    题目链接 很明显的一道完全背包板子题,做法也很简单,就是要注意 这里你可以买比所需多的干草,只要达到数量就行了 状态转移方程:dp[j]=min(dp[j],dp[j-m[i]]+c[i]) 代码如下 ...

  2. 又一道区间DP的题 -- P3146 [USACO16OPEN]248

    https://www.luogu.org/problemnew/show/P3146 一道区间dp的题,以区间长度为阶段; 但由于要处理相邻的问题,就变得有点麻烦; 最开始想了一个我知道有漏洞的方程 ...

  3. [真题] 一道 vsftp 运维题

    一道 vsftp 运维题 一.前言 在 V 站上凑巧看到了好友发的求助帖,五天时间一个理他的都没有.哈哈哈~ 废话不多说,我们来试试. 二.题目 这里我们假设存在这样的场景: 网络内有普通用户 ade ...

  4. QDUOJ 一道简单的数据结构题 栈的使用(括号配对)

    一道简单的数据结构题 发布时间: 2017年6月3日 18:46   最后更新: 2017年6月3日 18:51   时间限制: 1000ms   内存限制: 128M 描述 如果插入“+”和“1”到 ...

  5. MT【327】两道不等式题

    当$x,y\ge0,x+y=2$时求下面式子的最小值:1)$x+\sqrt{x^2-2x+y^2+1}$2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$ 解:1)$P(x,y ...

  6. [POI2010]KLO-Blocks——一道值得思考的题

    题目大意: 给出N个正整数a[1..N],再给出一个正整数k,现在可以进行如下操作:每次选择一个大于k的正整数a[i],将a[i]减去1,选择a[i-1]或a[i+1]中的一个加上1.经过一定次数的操 ...

  7. hihocoder第220周-一道拧巴的题

    一.220周 题目链接 问题描述 键盘上有N个数字按键,每个按键只能按一次,每次可以按下多个键,请输出所有可能的按键情况. 输入一个整数N(N在1~8之间),输出全部的按键可能.例如:输入3,输出为 ...

  8. Convex 一道阿姆斯特朗回旋好题

    2001年5月8日,阿姆斯特朗(Armstrong, 1929-2013) 教授发明了一种名为“阿姆斯特朗回旋加速喷气式阿姆斯特朗加密”的加密算法,算法从未公开,直至2013阿姆斯特朗教授逝世后,其生 ...

  9. 刷题向》一道简单的思路题BZOJ1800(EASY+)

    这道题其实并不难,主要原因是数据范围很小,当然数据如果大来也可以优化,但重点是在做的时候用的思路很通用, 所以本题是一道思想题(当然思想也不难) 标题里的“+”体现在一些边界处理中. 直接甩题目 De ...

随机推荐

  1. 使用git将本地项目推送到码云私有仓库

    https://blog.csdn.net/qq_33876553/article/details/80111946 2018年04月27日 19:53:33 桥路丶 阅读数:2958 前言 之前博主 ...

  2. vue处理异步数据踩过的坑

    在开发时,由于数据是异步的导致页面在render 时data是空值 出现报错和警告. 我是这么处理的 把data先写出一个空的完整结构.暂时是这么处理 或者用三元表达式进行赋值监听.data ?myd ...

  3. Es6数值拓展

    Es6数值拓展 一,Number扩展 1,ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b(或0B)和0o(或0O)表示. 将0b和0o前缀的字符串数值转为十进制,要使用Number方法 N ...

  4. asp.net core下一个简单的分页技术

    在做web应用的时候免不了要对数据进行分页,我最近在做asp.net core的开发的时候就遇到了这个需求,现在简单的记录一下: public class PaginatedList<T> ...

  5. 项目中常用的MySQL 优化

    本文我们来谈谈项目中常用的MySQL优化方法,共19条,具体如下: 一.EXPLAIN 做MySQL优化,我们要善用EXPLAIN查看SQL执行计划. 下面来个简单的示例,标注(1.2.3.4.5)我 ...

  6. C# Note2:委托(delegate) & Lambda表达式 & 事件(event)

    前言 本文主要讲述委托和Lambda表达式的基础知识,以及如何通过Lambda表达式实现委托调用,并阐述.NET如何将委托用作实现事件的方式. 参考:C#高级编程 1.什么是委托(delegate)? ...

  7. RPC框架-RMI、RPC和CORBA的区别

    关键词:RMI RPC CORBA简 介:本篇文章重点阐述RMI,附带介绍RPC和CORBA Java远程方法调用(Java RMI)是一组实现了远程方法调用(rmi)的API. java RMI是远 ...

  8. js 首次进入弹窗

    今天有个需求,首次进入需要弹窗,然后就在网上找了下,虽然看了很多但是说的都不是我想要的,最后终于到了一个合适的. function get_cookie(Name) { var search = Na ...

  9. jenkins结合svn检测版本变化执行shell脚本实现项目部署

    工具: centos 7 jenkins-2.138.2-1.1.noarch.rpm,2018年10月10号最新版(简单rpm包安装见https://www.cnblogs.com/dannylin ...

  10. Delphi数据集与记录

    1.1Delphi数据库应用程序的层次结构 Delphi数据库应用程序通过数据存取构件对数据库进行访问,通过可视的数据构件(Data Control)将数据呈现给用户,并与用户进行交互.Delphi数 ...