【agc013d】Piling Up(动态规划)

题面

atcoder

洛谷

有\(n\)个球,颜色为黑白中的一种,初始时颜色任意。

进行\(m\)次操作,每次操作都是先拿出一个求,再放进黑白各一个,再拿出一个球。

求最终拿出球的序列的方案数。

题解

首先可以把操作看成每次拿出一个球把它染上任意一种颜色。

设\(f[i][j]\)表示进行完前\(i\)次操作,还剩下\(j\)个黑球的方案数。

拿出球的序列如果只从黑球的角度来看的话,可以看成一个\(+1,-1\)组成的折线。

如果折线能够到达的最小值不为\(0\),那么我们可以通过平移把它移到\(0\)这个位置,并且平移过程中所有的操作序列所得到的结果串都是一样的。

那么我们强制只在\(0\)位置计算答案,给状态额外加上一维,表示\(j\)是否到达过\(0\)。

这样子答案就是\(\sum f[m][j][1]\)了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define MAX 3030
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,ans,f[MAX][MAX][2];
int main()
{
scanf("%d%d",&n,&m);f[0][0][1]=1;
for(int i=1;i<=n;++i)f[0][i][0]=1;
for(int i=1;i<=m;++i)
for(int j=0;j<=n;++j)
for(int k=0;k<=1;++k)
{
if(j)add(f[i][j][k|(j==1)],f[i-1][j][k]),add(f[i][j-1][k|(j==1)],f[i-1][j][k]);
if(n-j)add(f[i][j+1][k],f[i-1][j][k]),add(f[i][j][k],f[i-1][j][k]);
}
for(int i=0;i<=n;++i)add(ans,f[m][i][1]);
printf("%d\n",ans);return 0;
}

【agc013d】Piling Up(动态规划)的更多相关文章

  1. 【agc013d】AtCoder Grand Contest 013 D - Piling Up

    题意 盒子里有n块砖,每块的颜色可能为蓝色或红色. 执行m次三步操作: 1.从盒子里随便拿走一块砖 2.放入一块蓝砖和红砖到盒子里 3.从盒子里随便拿走一块砖 给定n,m 问拿出来的砖,可能有多少种不 ...

  2. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  3. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  4. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  5. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  6. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  7. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  8. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  9. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

随机推荐

  1. p86商空间也是Banach空间

    1.为什么要引入Zk? 2.为什么这个等式成立,和为什么要引入uk? 3.为什么为什么等于0? 属于M,则商空间是0元,p128最上面的第二个笔记

  2. Django lazy load 懒加载 倒序查询

    Django orm默认懒加载   Django orm默认使用的懒加载,即使用的时候才去访问数据库,且每次默认取最少的数据,当然这样有好处也有坏处... 坏处: 会导致频繁的查询数据库,如涉及到外键 ...

  3. Jenkins整合SonarQube代码检测工具

    借鉴博客:https://blog.csdn.net/kefengwang/article/details/54377055 上面这博客写得挺详细的,挺不错.它这个博客没有提供下载的教程,这个博客提供 ...

  4. npm --save-dev 和--save 参数的区别

    npm中的--save与--save-dev参数的区别 --save一般规定把产品运行时(或生产环境)需要的npm包存入到package.json的dependencies中: --save-dev则 ...

  5. CLOUD添加自定义基础数据

    1.打开bos平台,文件-新建-复制-基础资料 2.新建目标对象 3.发布 4.开始新增对象 5.明细维护,完成 6.添加成功

  6. K3BOM跳层

    A自制件,B自制件,C外购件 ,结构为A-B-C 如果需要跳层,则设置A-B跳层,B-C跳层,则生成A计划订单,C计划订单, 假设单独A-B跳层,则MRP运算出的结果也是A计划订单,B计划订单,C计划 ...

  7. Python基础知识2-内置数据结构(下)

    bytes.bytearray #思考下面例子: a = 1 b = a print(a == b)#True print(a is b)#True print(id(a) is id(b))#Fal ...

  8. class面向对象-2

    hasattr/getattr/setattr/delattr #通过字符串判断/获取/新增/删除对象属性或方法 class att(object): def __init__(self,var): ...

  9. php 将数组转换网址URL参数

    $array =array ( 'id' =123, 'name' = 'dopost' );echo http_build_query( $array );//得到结果id=123name=dopo ...

  10. 如何在网页中用echarts图表插件做出静态呈现效果

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...