【agc013d】Piling Up(动态规划)
【agc013d】Piling Up(动态规划)
题面
atcoder
洛谷
有\(n\)个球,颜色为黑白中的一种,初始时颜色任意。
进行\(m\)次操作,每次操作都是先拿出一个求,再放进黑白各一个,再拿出一个球。
求最终拿出球的序列的方案数。
题解
首先可以把操作看成每次拿出一个球把它染上任意一种颜色。
设\(f[i][j]\)表示进行完前\(i\)次操作,还剩下\(j\)个黑球的方案数。
拿出球的序列如果只从黑球的角度来看的话,可以看成一个\(+1,-1\)组成的折线。
如果折线能够到达的最小值不为\(0\),那么我们可以通过平移把它移到\(0\)这个位置,并且平移过程中所有的操作序列所得到的结果串都是一样的。
那么我们强制只在\(0\)位置计算答案,给状态额外加上一维,表示\(j\)是否到达过\(0\)。
这样子答案就是\(\sum f[m][j][1]\)了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define MAX 3030
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,ans,f[MAX][MAX][2];
int main()
{
scanf("%d%d",&n,&m);f[0][0][1]=1;
for(int i=1;i<=n;++i)f[0][i][0]=1;
for(int i=1;i<=m;++i)
for(int j=0;j<=n;++j)
for(int k=0;k<=1;++k)
{
if(j)add(f[i][j][k|(j==1)],f[i-1][j][k]),add(f[i][j-1][k|(j==1)],f[i-1][j][k]);
if(n-j)add(f[i][j+1][k],f[i-1][j][k]),add(f[i][j][k],f[i-1][j][k]);
}
for(int i=0;i<=n;++i)add(ans,f[m][i][1]);
printf("%d\n",ans);return 0;
}
【agc013d】Piling Up(动态规划)的更多相关文章
- 【agc013d】AtCoder Grand Contest 013 D - Piling Up
题意 盒子里有n块砖,每块的颜色可能为蓝色或红色. 执行m次三步操作: 1.从盒子里随便拿走一块砖 2.放入一块蓝砖和红砖到盒子里 3.从盒子里随便拿走一块砖 给定n,m 问拿出来的砖,可能有多少种不 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
随机推荐
- Python_函数的初识、函数的返回值、函数的参数
1.函数的初识 def关键字 空格 函数名(与变量名命名规则相同):英文冒号 函数体 执行函数:函数名+() 函数是以功能为导向的. def login(): pass def register(): ...
- node.js介绍和npm的使用
Node.js介绍 打开Nodejs英文网:https://nodejs.org/en/ 中文网:http://nodejs.cn/ 我们会发现这样一句话: 翻译成中文如下: Node.js 是一个基 ...
- 软工网络15团队作业8——Beta阶段敏捷冲刺
Deadline: 2018-5-31 22:00PM,以博客提交至班级博客时间为准 根据以下要求: (1)在敏捷冲刺前发布一篇博客,作为beta版敏捷冲刺的开始, (2)同时,团队在日期区间[5.2 ...
- 测试python最大递归层次
转自:https://www.cnblogs.com/xiongdashuai/p/6243372.html python默认的最大递归层数: 运行环境:Windows 7,x64python环境:p ...
- linuxmint 搜狗输入法安装
1.下载搜狗输入法linux安装包 2.进入安装包目录终端键入 dpkg -i [软件包名字] 3.设置语言选项中选择fcitx 4.重启电脑
- bootstrap模态框关闭后清除模态框的数据
https://segmentfault.com/q/1010000008789123 bootstrap模态框第二次打开时如何清除之前的数据? 我用了bootstrap模态框的remote功能,在弹 ...
- 小程序和H5互调
小程序跳H5页面 https://blog.csdn.net/mytljp/article/details/81030687(copy) H5页面跳小程序 https://blog.csdn.net/ ...
- .Net中EF通用数据层小结
增删改查: using System; using System.Collections.Generic; using System.Data; using System.Data.Entity; u ...
- Oracle 中sql文件的导入导出
导出 一般导入的时候我用的是命令行 imp c##zs/@orcl fromuser=c##zs touser=c##zs file=D:\java\.dmp ignore=y c##zs 是创建的用 ...
- select、poll、epoll之间的区别(搜狗面试)
(1)select==>时间复杂度O(n) 它仅仅知道了,有I/O事件发生了,却并不知道是哪那几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对 ...