传送门

题意

  将一个数N分解为2的幂之和共有几种分法?

题解

  定义dp[ i ]为 i 的分解方案数。

  初始化dp[0] = 2= 1;

  状态转移方程为:

  for i : 1 to N

    若 i 为偶数,则dp[ i ] = dp[ i / 2] + dp[i – 1] ;

    否则dp[i] = dp[ i – 1];

对状态转移方程的理解:

  打个表先~~~~

  i  i 的分解方案

  1......1

  2......1+1,2

  3......1+1+1,2+1

  4......(2+1+1),(1+1+1+1),(2+2),(4)

  5......2+1+1+1,1+1+1+1+1,2+2+1,4+1

  6......2+1+1+1+1,1+1+1+1+1+1,2+2+1+1,4+1+1,2+2+2,4+2

  7......(2+1+1+1+1+1),(1+1+1+1+1+1+1),(2+2+1+1+1),(4+1+1+1),(2+2+2),(4+2+1)

  8......(2+1+1+1+1+1+1),(1+1+1+1+1+1+1+1),(2+2+1+1+1+1),(4+1+1+1+1),(2+2+2),(4+2+1+1),(4+2+2),(2+2+2+2),(4+4),(8)

  以8的为例,dp[8]=dp[20+7]+dp[2* 4];

  8分解成2的幂之和,只能分解成2, 2, 2, 23之间的加和。

  如果分解方案中含有20,并且不能出现重复,那可以考虑7的分解方案中的每个方案都+1 <=> 8的含20的分解方案总数(对应表中橘色部分);

  因为dp[7]中的分解方案数是不重复的,所以每个方案数+1也是不重复的;

  那,如何使分解方案中不含有20呢?

  想一下4的分解方案数是怎么得到的?

  4分解成2的幂之,只能分解成2, 2, 22之间的加和;

  如果4中的每个方案都 ×2,那不就正好变成8的分解方案中只不含有20的分解方案了吗(对应表中蓝色部分)?

  如果 i 为奇数,就不能通过某数 ×2 来得到 i;

  那也就是说只能通过 (i-1) 方案中每个方案+1 得到 i 的所有分解方案,故dp[ i ]=dp[ i-1]

•Code

 #include<iostream>
#include<cstdio>
using namespace std;
const int MOD=1e9;
const int maxn=1e6+; int N;
int dp[maxn]; int main()
{
scanf("%d",&N);
dp[] = ; // 2^0
for(int i=;i <= N;++i)
{
if ((i & 0x1) == )//判断i是否为偶数
dp[i]=dp[ i / ]; //将i/2的每个构成数乘以2,得到 i
dp[i] += dp[i - ]; //将i-1的构成数拿过来加一
dp[i] %= MOD;
}
printf("%d\n",dp[N]);
return ;
}

分割线:2019.6.16

•类比“n的m划分”

重新理解了一下“n的m划分”这种题的求解方法,想到了这道题;

感觉这道题和n的m划分很像;

n的m划分在状态转移时考虑的是“划分数种是否包含0这个元素”;

而在此题中,考虑的是“是否包含20这个元素”;

这应该是有两者的性质决定的,前者需要的是任意数的累加,后者需要的是2的幂的累加;

而任意数中的最小值为0,2的幂的最小值为20=1;

根据最小值的不同,考虑的不包含的数也不同;

此题中,数 i 的划分可分为两类:

①包含20

②不包含20

包含 2很好办,直接将 i-1 的划分 +1 便可得到 i 的划分中包含 20 的划分方案数;

主要是不包含20要如何求解?

与n的m划分相仿,如果 i 为偶数,那么将 i/2 中划分 ×2 得到的就是 i 的划分不包含 20 的划分方案数;

根据上述讲解定义dp[ i ]表示 i 的划分方案数;

那么 dp[ i ]=dp[ i ]-1 + ( i为偶数 ? dp[ i/2 ] : 0);

dp[ 1 ] = 1;

Code

 #include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll MOD=1e9; int n;
ll dp[maxn]; ll Solve()
{
dp[]=;
for(int i=;i <= n;++i)
{
dp[i]=dp[i-];
if(!(i&))
dp[i] += dp[i>>];
dp[i] %= MOD;
}
return dp[n]%MOD;
}
int main()
{
scanf("%d",&n);
printf("%lld\n",Solve());
return ;
}

poj 2229 Sumsets(记录结果再利用的DP)的更多相关文章

  1. NOIP 提高组 2014 飞扬的小鸟(记录结果再利用的DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 参考资料: [1]:https://www.luogu.org/blog/xxzh242 ...

  2. poj 2385 Apple Catching(记录结果再利用的动态规划)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 有两颗苹果树,在每一时刻只有其中一棵苹果树会掉苹果,而Bessie可以在很短的时 ...

  3. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  4. 记录结果再利用的"动态规划"之背包问题

    参考<挑战程序设计竞赛>p51 https://www.cnblogs.com/Ymir-TaoMee/p/9419377.html 01背包问题 问题描述:有n个重量和价值分别为wi.v ...

  5. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

  6. 记录结果再利用的"动态规划"

    2018-09-24 15:01:37 动态规划(DP: Dynamic Programming)是算法设计方法之一,在程序设计竞赛中经常被选作题材.在此,我们考察一些经典的DP问题,来看看DP究竟是 ...

  7. poj 2229 Sumsets(dp)

    Sumsets Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 400000/200000K (Java/Other) Total Sub ...

  8. poj 2229 Sumsets 完全背包求方案总数

    Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...

  9. POJ 2229 Sumsets(找规律,预处理)

    题目 参考了别人找的规律再理解 /* 8=1+1+1+1+1+1+1+1+1 1 8=1+1+1+1+1+1+1+2 2 3 8=1+1+1+1+2+2 8=1+1+1+1+4 4 5 8=1+1+2 ...

随机推荐

  1. zsh & tree & macOS

    zsh & tree & macOS https://unix.stackexchange.com/questions/22803/counting-files-in-leaves-o ...

  2. python数学第六天【指数族】

  3. java_manual的一点体会

    最近看了一下Alibaba的java_manual1.4,看了感觉有很多好的标准,这里摘录一些,也帮助自己的代码更加规范化 先放一些MySQL的规范: 这里附上MySQL官网给的参考手册上的 关键字和 ...

  4. Git官方推荐用书

    用Git看了N多的Blog, 乱七八糟. 官方的推荐用书写得最好,最权威.还可以下载pdf.记录一笔. https://git-scm.com/book/zh/v2/

  5. vue2 mint-ui loadmore(下拉刷新)

    <template> <div class="page-loadmore"> <h1 class="page-title"> ...

  6. nodejs zip 安装配置

    1.下载 下载地址:https://nodejs.org/zh-cn/download/ 选择相应的版本下载 2.解压缩 将文件解压到要安装的位置,并新建两个目录 node-global :npm全局 ...

  7. #194 sequence(搜索+动态规划+主席树)

    考虑按顺序暴搜子序列.如果序列中的数两两不同,显然每次给上一个找到的子序列添上后缀最小值,即为下一个要找的子序列.如果不能再加了就回溯继续考虑后缀次小.第三小……值,直到找到k个子序列. 有重复的数后 ...

  8. Task Schedule HDU - 3572(按时间点建边)

    问题描述 我们的几何公主XMM已经开始研究计算几何学,专注于她新开的工厂.她的工厂引进了M台新机器来处理即将到来的N个任务.对于第i个任务,工厂必须在第Si天或之后开始处理它,处理Pi天,并在Ei之前 ...

  9. bzoj 2429: [HAOI2006]聪明的猴子 (最小生成树)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2429 思路:就是找最小生成树最大的一条边,最小生成树的性质,最后加入的那条边就是最大的 实现 ...

  10. power designer 一般常用快捷键(转)

    一般快捷键 快捷键 说明 F4 打开检查模型窗口,检查模型 F5 如果图窗口内的图改变过大小,恢复为原有大小即正常大小 F6 放大图窗口内的图 F7 缩小图窗口内的图 F8 在图窗口内中查看全部图内容 ...